Skip to main content

Advertisement

Log in

Single dose of a dopamine agonist impairs reinforcement learning in humans: Behavioral evidence from a laboratory-based measure of reward responsiveness

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The dopaminergic system, particularly D2-like dopamine receptors, has been strongly implicated in reward processing. Animal studies have emphasized the role of phasic dopamine (DA) signaling in reward-related learning, but these processes remain largely unexplored in humans.

Objectives

To evaluate the effect of a single, low dose of a D2/D3 agonist—pramipexole—on reinforcement learning in healthy adults. Based on prior evidence indicating that low doses of DA agonists decrease phasic DA release through autoreceptor stimulation, we hypothesized that 0.5 mg of pramipexole would impair reward learning due to presynaptic mechanisms.

Materials and methods

Using a double-blind design, a single 0.5-mg dose of pramipexole or placebo was administered to 32 healthy volunteers, who performed a probabilistic reward task involving a differential reinforcement schedule as well as various control tasks.

Results

As hypothesized, response bias toward the more frequently rewarded stimulus was impaired in the pramipexole group, even after adjusting for transient adverse effects. In addition, the pramipexole group showed reaction time and motor speed slowing and increased negative affect; however, when adverse physical side effects were considered, group differences in motor speed and negative affect disappeared.

Conclusions

These findings show that a single low dose of pramipexole impaired the acquisition of reward-related behavior in healthy participants, and they are consistent with prior evidence suggesting that phasic DA signaling is required to reinforce actions leading to reward. The potential implications of the present findings to psychiatric conditions, including depression and impulse control disorders related to addiction, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baudry M, Martres MP, Schwartz JC (1977) In vivo binding of 3H-pimozide in mouse striatum: effects of dopamine agonists and antagonists. Life Sci 21:1163–1170

    Article  PubMed  CAS  Google Scholar 

  • Bayer HM, Glimcher PW (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47:129–141

    Article  PubMed  CAS  Google Scholar 

  • Beck AT, Steer RA, Brown GK (1996) Beck depression inventory manual, 2nd edn. The Psychological Corporation, San Antonio, TX

    Google Scholar 

  • Bogdan R, Pizzagalli DA (2006) Acute stress reduces reward responsiveness: implications for depression. Biol Psychiatry 60:1147–1154

    Article  PubMed  Google Scholar 

  • Bond A, Lader M (1974) The use of analogue scales in rating subjective feelings. Br J Med Psychol 47:211–218

    Google Scholar 

  • Cassano P, Lattanzi L, Soldani F, Navari S, Mattistini G, Gemignani A, Cassano G (2004) Pramipexole in treatment-resistant depression: an extended follow-up. Depress Anxiety 20:131–138

    Article  PubMed  CAS  Google Scholar 

  • Chapman LJ, Chapman JP (1987) The measurement of handedness. Brain Cogn 6:175–183

    Article  PubMed  CAS  Google Scholar 

  • Chen YC, Choi JK, Andersen SL, Rosen BR, Jenkins BG (2005) Mapping dopamine D2/D3 receptor function using pharmacological magnetic resonance imaging. Psychopharmacology (Berl) 180:705–715

    Article  CAS  Google Scholar 

  • Cheng J, Feenstra MG (2006) Individual differences in dopamine efflux in nucleus accumbens shell and core during instrumental learning. Learn Mem 13:168–177

    Article  PubMed  CAS  Google Scholar 

  • Civelli O (2000) Molecular biology of dopamine receptor subtypes. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York

    Google Scholar 

  • Cools R, Altamirano L, D’Esposito M (2006) Reversal learning in Parkinson’s disease depends on medication status and outcome valence. Neuropsychologia 44:1663–1673

    Article  PubMed  Google Scholar 

  • Cools R, Lewis SJ, Clark L, Barker RA, Robbins TW (2007) L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology 32:180–189

    Article  PubMed  CAS  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (2003) The biochemical basis of neuropharmacology, 8th edn. Oxford University Press, Oxford

    Google Scholar 

  • Corrigan MH, Denahan AQ, Wright CE, Ragual RJ, Evans DL (2000) Comparison of pramipexole, fluoxetine, and placebo in patients with major depression. Depress Anxiety 11:58–65

    Article  PubMed  CAS  Google Scholar 

  • de Wit H, Enggasser JL, Richards JB (2002) Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology 27:813–825

    Article  PubMed  Google Scholar 

  • Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64:327–337

    Article  PubMed  CAS  Google Scholar 

  • Ferreira JJ, Galitzky M, Thalamas C, Tiberge M, Montastruc JL, Sampaio C, Rascol O (2002) Effect of ropinirole on sleep onset: a randomized, placebo-controlled study in healthy volunteers. Neurology 58:460–462

    PubMed  CAS  Google Scholar 

  • Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299:1898–1902

    Article  PubMed  CAS  Google Scholar 

  • First MB, Spitzer RL, Gibbon M, Williams JBW (2002) Structured clinical interview for DSM-IV-TR axis I disorders, Research Version, Patient Edition (SCID-I/P). Biometrics Research, New York State Psychiatric Institute, New York

  • Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17:51–72

    Article  PubMed  Google Scholar 

  • Frank MJ, O’Reilly RC (2006) A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci 120:497–517

    Article  PubMed  CAS  Google Scholar 

  • Frank MJ, Seeberger LC, O’Reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306:1940–1943

    Article  PubMed  CAS  Google Scholar 

  • Fuller RW, Clemens JA, Hynes MD 3rd (1982) Degree of selectivity of pergolide as an agonist at presynaptic versus postsynaptic dopamine receptors: implications for prevention or treatment of tardive dyskinesia. J Clin Psychopharmacol 2:371–375

    Article  PubMed  CAS  Google Scholar 

  • Garris PA, Kilpatrick M, Bunin MA, Michael D, Walker QD, Wightman RM (1999) Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398:67–69

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni G, van Schalkwyk J, Fritz VU, Lees AJ (1999) Bradykinesia akinesia inco-ordination test (BRAIN TEST): an objective computerised assessment of upper limb motor function. J Neurol Neurosurg Psychiatry 67:624–629

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (2002) Dopamine. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams & Wilkins, Philadelphia, pp 119–132

    Google Scholar 

  • Harrison BJ, Olver JS, Norman TR, Nathan PJ (2002) Effects of serotonin and catecholamine depletion on interleukin-6 activation and mood in human volunteers. Hum Psychopharmacol 17:293–297

    Article  PubMed  CAS  Google Scholar 

  • Hollerman JR, Schultz W (1998) Dopamine neurons report an error in the temporal prediction of reward during learning. Nat Neurosci 1:304–309

    Article  PubMed  CAS  Google Scholar 

  • Holroyd CB, Coles MGH (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709

    Article  PubMed  Google Scholar 

  • Hornykiewicz O, Kish SJ (1987) Biochemical pathophysiology of Parkinson’s disease. Adv Neurol 45:19–34

    PubMed  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1996) Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. Behav Neurosci 110:331–345

    Article  PubMed  CAS  Google Scholar 

  • Keating GL, Rye DB (2003) Where you least expect it: dopamine in the pons and modulation of sleep and REM-sleep. Sleep 26:788–789

    PubMed  Google Scholar 

  • Lefoll B, Diaz J, Sokoloff P (2005) Neuroadaptations to hyperdopaminergia in dopamine D3-receptor deficient mice. Life Sci 76:1281–1296

    Article  CAS  Google Scholar 

  • Lehr E (2002) Potential antidepressant properties of pramipexole detected in locomotor and operant behavioral investigations in mice. Psychopharmacology 163:495–500

    Article  PubMed  CAS  Google Scholar 

  • Lemke MR, Brecht HM, Koester J, Reichmann H (2006) Effects of the dopamine agonist pramipexole on depression, anhedonia and motor functioning in Parkinson’s disease. J Neurol Sci 248:266–270

    Article  PubMed  CAS  Google Scholar 

  • Leyton M, aan het Rot M, Booij L, Baker GB, Young SN, Benkelfat C (2007) Moodelevating effects of d-amphetamine and incentive salience: the effect of acute dopamine precursor depletion. J Psychiatry Neurosci 32:129–136

    PubMed  Google Scholar 

  • Maj J, Rogoz Z (1999) Synsergic effect of pramipexole and sertraline in the forced swimming test. Pol J Pharmacol 51:471–475

    PubMed  CAS  Google Scholar 

  • Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947

    PubMed  CAS  Google Scholar 

  • Montague PR, Hyman SE, Cohen JD (2004) Computational roles for dopamine in behavioural control. Nature 431:760–767

    Article  PubMed  CAS  Google Scholar 

  • Monti JM, Hawkins M, Jantos H, D’Angelo L, Fernandez M (1988) Biphasic effects of dopamine D-2 receptor agonists on sleep and wakefulness in the rat. Psychopharmacology 95:395–400

    Article  PubMed  CAS  Google Scholar 

  • Myers RE, Anderson LI, Dluzen DE (2003) Estrogen, but not testosterone, attenuates methamphetamine-evoked dopamine output from superfused striatal tissue of female and male mice. Neuropharmacology 44:624–632

    Article  PubMed  CAS  Google Scholar 

  • Nagy H, Keri S, Myers CE, Benedek G, Shohamy D, Gluck MA (2007) Cognitive sequence learning in Parkinson’s disease and amnestic mild cognitive impairment: dissociation between sequential and non-sequential learning of associations. Neuropsychologia 45:1386–1392

    Article  PubMed  Google Scholar 

  • Parkinson Study Group (2000) Pramipexole vs levodopa as initial treatment for Parkinson disease: a randomized controlled trial. Parkinson Study Group. JAMA 284:1931–1938

    Article  Google Scholar 

  • Parkinson JA, Dalley JW, Cardinal RN, Bamford A, Fehnert B, Lachenal G, Rudarakanchana N, Halkerston KM, Robbins TW, Everitt BJ (2002) Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function. Behav Brain Res 137:149–163

    Article  PubMed  CAS  Google Scholar 

  • Perbal S, Couillet J, Azouvi P, Pouthas V (2003) Relationships between time estimation, memory, attention, and processing speed in patients with severe traumatic brain injury. Neuropsychologia 41:1599–1610

    Article  PubMed  Google Scholar 

  • Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD (2006) Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442:1042–1045

    Article  PubMed  CAS  Google Scholar 

  • Piercey MF, Hoffmann WE, Smith MW, Hyslop DK (1996) Inhibition of dopamine neuron firing by pramipexole, a dopamine D3 receptor-preferring agonist: comparison to other dopamine receptor agonists. Eur J Pharmacol 312:35–44

    Article  PubMed  CAS  Google Scholar 

  • Pizzagalli DA, Jahn AL, O’Shea JP (2005) Toward an objective characterization of an anhedonic phenotype: a signal-detection approach. Biol Psychiatry 57:319–327

    Article  PubMed  Google Scholar 

  • Reynolds JN, Hyland BI, Wickens JR (2001) A cellular mechanism of reward-related learning. Nature 413:67–70

    Article  PubMed  CAS  Google Scholar 

  • Robinson S, Rainwater AJ, Hnasko TS, Palmiter RD (2007) Viral restoration of dopamine signaling to the dorsal striatum restores instrumental conditioning to dopamine-deficient mice. Psychopharmacology (Berl) 191:567–578

    Article  CAS  Google Scholar 

  • Rye DB (2004) The two faces of Eve: dopamine’s modulation of wakefulness and sleep. Neurology 63(8 Suppl 3):S2–S7

    PubMed  Google Scholar 

  • Rye DB, Jankovic J (2002) Emerging views of dopamine in modulating sleep/wake state from an unlikely source: PD. Neurology 58:341–346

    Google Scholar 

  • Samuels ER, Hou RH, Langley RW, Szabadi E, Bradshaw CM (2006a) Comparison of pramipexole and amisulpride on alertness, autonomic and endocrine functions in healthy volunteers. Psychopharmacology (Berl) 187:498–510

    Article  CAS  Google Scholar 

  • Samuels ER, Hou RH, Langley RW, Szabadi E, Bradshaw CM (2006b) Comparison of pramipexole and modafinil on arousal, autonomic, and endocrine functions in healthy volunteers. J Psychopharmacol 20:756–770

    Article  PubMed  CAS  Google Scholar 

  • Schmitz Y, Benoit-Marand M, Gonon F, Sulzer D (2003) Presynaptic regulation of dopaminergic neurotransmission. J Neurochem 87:273–289

    Article  PubMed  CAS  Google Scholar 

  • Schuck S, Bentue-Ferrer D, Kleinermans D, Reymann JM, Polard E, Gandon JM, Allain H (2002) Psychomotor and cognitive effects of piribedil, a dopamine agonist, in young healthy volunteers. Fundam Clin Pharmacol 16:57–65

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30:203–210

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Schwabe K, Koch M (2007) Effects of aripiprazole on operant responding for a natural reward after psychostimulant withdrawal in rats. Psychopharmacology (Berl) 191:759–765

    Article  CAS  Google Scholar 

  • Servan-Schreiber D, Carter CS, Bruno RM, Cohen JD (1998) Dopamine and the mechanisms of cognition: Part II. D-amphetamine effects in human subjects performing a selective attention task. Biol Psychiatry 43:723–729

    Article  PubMed  CAS  Google Scholar 

  • Sevy S, Hassoun Y, Bechara A, Yechiam E, Napolitano B, Burdick K, Delman H, Malhotra A (2006) Emotion-based decision-making in healthy subjects: short-term effects of reducing dopamine levels. Psychopharmacology (Berl) 188:228–235

    Article  CAS  Google Scholar 

  • Shohamy D, Myers CE, Grossman S, Sage J, Gluck MA (2005) The role of dopamine in cognitive sequence learning: evidence from Parkinson’s disease. Behav Brain Res 156:191–199

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff P, Diaz J, Le Foll B, Guillin O, Leriche L, Bezard E, Gross C (2006) The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets 5:25–43

    PubMed  CAS  Google Scholar 

  • Sokolowski JD, Conlan AN, Salamone JD (1998) A microdialysis study of nucleus accumbens core and shell dopamine during operant responding in the rat. Neuroscience 86:1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Spielberger CD, Gorsuch RL, Lushere RE (1970) Manual of the state-trait anxiety inventory. Consulting Psychologists, Palo Alto, CA

    Google Scholar 

  • Sumners C, de Vries JB, Horn AS (1981) Behavioural and neurochemical studies on apomorphine-induced hypomotility in mice. Neuropharmacology 20:1203–1208

    Article  PubMed  CAS  Google Scholar 

  • Tissari AH, Rossetti ZL, Meloni M, Frau MI, Gessa GL (1983) Autoreceptors mediate the inhibition of dopamine synthesis by bromocriptine and lisuride in rats. Eur J Pharmacol 91:463–468

    Article  PubMed  CAS  Google Scholar 

  • Tripp G, Alsop B (1999) Sensitivity to reward frequency in boys with attention deficit hyperactivity disorder. J Clin Child Psychol 28:366–375

    Article  PubMed  CAS  Google Scholar 

  • Waelti P, Dickinson A, Schultz W (2001) Dopamine responses comply with basic assumptions of formal learning theory. Nature 412:43–48

    Article  PubMed  CAS  Google Scholar 

  • Weintraub D, Siderowf AD, Potenza MN, Goveas J, Morales KH, Duda JE, Moberg PJ, Stern MB (2006) Association of dopamine agonist use with impulse control disorders in Parkinson disease. Arch Neurol 63:969–973

    Article  PubMed  Google Scholar 

  • Willner P (1995) Dopaminergic mechanisms in depression and mania. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 921–931

    Google Scholar 

  • Willner P, Lappas S, Cheeta S, Muscat R (1994) Reversal of stress-induced anhedonia by the dopamine receptor agonist, pramipexole. Psychopharmacology 115:454–462

    Article  PubMed  CAS  Google Scholar 

  • Wright CE, Sisson TL, Ichhpurani AK, Peters GR (1997) Steady-state pharmacokinetic properties of pramipexole in healthy volunteers. J Clin Pharmacol 37:520–525

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from NIMH (R01 MH68376; DAP) and Harvard College Research Program (ECS). Dr. Evins and Ms. Culhane were supported by a grant from the National Institute on Drug Abuse (K23 DA00510-01; AEE). Dr. Frank was supported by a grant from the National Institute on Drug Abuse (DA022630). The authors would like to thank Dr. Catherine Fullerton, Kyle Ratner, Elena Goetz, and Jeffrey Birk for their assistance with the project, Dr. David Standaert for his helpful review of the results, and three anonymous reviewers for their constructive criticisms.

Disclosure/Conflict of interest statement

Dr. Pizzagalli has received research support from GlaxoSmithKline and Merck & Co., manufacturers of antidepressants. Dr. Evins has received research grant support from Janssen Pharmaceutica, Sanofi-Aventis, Astra Zeneca; research materials from GSK and Pfizer, and honoraria from Primedia. Moreover, Dr. Evins is an investigator in a NIDA-funded collaborative study with GSK. Dr. Frank, Ms. Schetter, Ms. Culhane, and Ms. Pajtas report no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego A. Pizzagalli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pizzagalli, D.A., Evins, A.E., Schetter, E.C. et al. Single dose of a dopamine agonist impairs reinforcement learning in humans: Behavioral evidence from a laboratory-based measure of reward responsiveness. Psychopharmacology 196, 221–232 (2008). https://doi.org/10.1007/s00213-007-0957-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0957-y

Keywords

Navigation