Skip to main content

Advertisement

Log in

Effects of subunit selective nACh receptors on operant ethanol self-administration and relapse-like ethanol-drinking behavior

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objectives

The sensitivity to ethanol central effects is partially determined by the subunit composition of brain nicotinic acetylcholine receptors (nAChRs). Thus, the effects of intraventral tegmental area (VTA) administration of the nicotinic subunit-specific antagonist, α-conotoxin MII (αCtxMII, α3β2*, β3*, α6*), were compared to those of systemic mecamylamine (MEC, an allosteric negative modulator of the nAChR), dihydro-β-erythroidine (DHβE, α4β2*), and methyllycaconitine (MLA, α7*) to elucidate involvement of different subunits of nAChRs in operant ethanol self-administration and relapse-like activation of ethanol consumption after ethanol deprivation in rats.

Methods

The effects of drugs were studied in rats trained for operant oral self-administration of ethanol (FR = 1). For ethanol deprivation, trained animals were subjected to a period of alcohol deprivation for 10 days. αCtxMII was given directly into the VTA through implanted permanent intracranial cannulae, whereas MEC, DHβE, and MLA were administered systemically.

Results

αCtxMII reduced operant ethanol self-administration and blocked the deprivation-induced relapse-like ethanol consumption. MEC reduced operant ethanol self-administration and inhibited the deprivation-induced increase in alcohol consumption. DHβE did not alter ethanol self-administration in the lower-dose range but inhibited ethanol intake at a higher dose (4 mg/kg), although this effect might have been nonspecific. MLA failed to block self-administration of ethanol and relapse-like drinking after deprivation.

Conclusions

Our results indicate that nAChRs are involved in the modulation of operant alcohol self-administration and relapse-like alcohol drinking behavior in rats. Our observations support the working hypothesis that systemically active selective ligands for nAChR α3β2*, β3, and/or α6* receptor subunits might be of therapeutic value for the treatment of alcoholism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Azam L, Winzer-Serhan UH, Chen Y, Leslie FM (2002) Expression of neuronal nicotinic acetylcholine receptor subunit mRNAs within midbrain dopamine neurons. J Comp Neurol 444(3):260–274

    Article  PubMed  CAS  Google Scholar 

  • Barrett SP, Tichauer M, Leyton M, Pihl RO (2006) Nicotine increases alcohol self-administration in non-dependent male smokers. Drug Alcohol Depend 81(2):197–204

    Article  PubMed  CAS  Google Scholar 

  • Benwell ME, Balfour DJ (1992) The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol 105:849–856

    PubMed  CAS  Google Scholar 

  • Bowers BJ, McClure-Begley TD, Keller JJ, Paylor R, Collins AC, Wehner JM (2005) Deletion of the alpha7 nicotinic receptor subunit gene results in increased sensitivity to several behavioral effects produced by alcohol. Alcohol Clin Exp Res 29(3):295–302

    Article  PubMed  CAS  Google Scholar 

  • Bowman WC, Rand MJ (1980) Textbook of pharmacology, 2nd edn. Blackwell Scientific, Oxford

    Google Scholar 

  • Buisson B, Gopalakrishnan M, Arneric SP, Sullivan JP, Bertrand D (1996) Human _4_2 neuronal nicotinic acetylcholine receptor in HEK 293 cells: a patch clamp study. J Neurosci 16:7880–7891

    PubMed  CAS  Google Scholar 

  • Cartier GE, Yoshikami D, Gray WR, Luo S, Olivera BM, McIntosh JM (1996) A new a-conotoxin which targets a3b2 nicotinic acetylcholine receptors. J Biol Chem 271:7522–7528

    Article  PubMed  CAS  Google Scholar 

  • Champtiaux N, Han ZY, Bessis A, Rossi FM, Zoli M, Marubio L, McIntosh JM, Changeux JP (2002) Distribution and pharmacology of a6-containing nicotinic acetylcholine receptors analyzed with mutant mice. J Neurosci 22:1208–1217

    PubMed  CAS  Google Scholar 

  • Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, Clementi F, Moretti M, Rossi FM, Le Novere N, McIntosh JM, Gardier AM, Changeux JP (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 23(21):7820–7829

    PubMed  CAS  Google Scholar 

  • Champtiaux N, Kalivas PW, Bardo MT (2006) Contribution of dihydro-beta-erythroidine sensitive nicotinic acetylcholine receptors in the ventral tegmental area to cocaine-induced behavioral sensitization in rats. Behav Brain Res 168(1):120–126

    Article  PubMed  CAS  Google Scholar 

  • Chavez-Noriega LE, Crona JH, Washburn MS, Urrutia A, Elliott KJ, Johnson EC (1997a) Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors h alpha 2 beta 2, h alpha 2 beta 4, h alpha 3 beta 2, h alpha 3 beta 4, h alpha 4 beta 2, h alpha 4 beta 4 and h alpha 7 expressed in Xenopus oocytes. J Pharmacol Exp Ther 280(1):346–356

    PubMed  CAS  Google Scholar 

  • Chavez-Noriega LE, Crona JH, Washburn MS, Urrutia A, Elliott KJ, Johnson EC (1997b) Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors ha2b2, ha2b4, ha3b2, ha3b4, ha4b2, ha4b4 and ha7 expressed in Xenopus oocytes. J Pharmacol Exp Ther 280:346–356

    PubMed  CAS  Google Scholar 

  • Clarke PB, Pert CB, Pert A (1984) Autoradiographic distribution of nicotine receptors in rat brain. Brain Res 323:390–395

    Article  PubMed  CAS  Google Scholar 

  • Clarke PB, Fu DS, Jakubovic A, Fibiger HC (1988) Evidence that mesolimbic dopaminergic activation underlies the locomotor stimulant action of nicotine in rats. J Pharmacol Exp Ther 246:701–708

    PubMed  CAS  Google Scholar 

  • Collins AC, Grady SR, Marks MJ (1995) Ethanol selectively modulates brain nicotinic receptor function. Alcohol Clin Exp Res 19:Abstract 502

    Google Scholar 

  • Corringer PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40:431–458

    Article  PubMed  CAS  Google Scholar 

  • Crews FT, Morrow AL, Criswell H, Breese G (1996) Effects of ethanol on ion channels. Int Rev Neurobiol 39:283–367

    Article  PubMed  CAS  Google Scholar 

  • Cui C, Booker TK, Allen RS, Grady SR, Whiteaker P, Marks MJ, Salminen O, Tritto T, Butt CM, Allen WR, Stitzel JA, McIntosh JM, Boulter J, Collins AC, Heinemann SF (2003) The beta3 nicotinic receptor subunit: a component of alpha-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. J Neurosci 23(35):11045–11053

    PubMed  CAS  Google Scholar 

  • Damaj MI, Welch SP, Martin BR (1995) In vivo pharmacological effects of dihydro-beta-erythroidine, a nicotinic antagonist, in mice. Psychopharmacology (Berl) 117:67–73

    Article  CAS  Google Scholar 

  • Damaj MI, Glassco W, Dukat M, Martin BR (1999) Pharmacological characterization of nicotine-induced seizures in mice. J Pharmacol Exp Ther 291:1284–1291

    PubMed  CAS  Google Scholar 

  • David V, Besson M, Changeux JP, Granon S, Cazala P (2006) Reinforcing effects of nicotine microinjections into the ventral tegmental area of mice: dependence on cholinergic nicotinic and dopaminergic D1 receptors. Neuropharmacology 50(8):1030–1040

    Article  PubMed  CAS  Google Scholar 

  • de Fiebre CM, Meyer EL (1995) Ethanol affects the function of nicotinic receptor subtypes expressed in Xenopus oocytes. Alcohol Clin Exp Res 19:Abstract 504

    Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85(14):5274–5278

    Article  PubMed  Google Scholar 

  • Engel JA (1977) Neurochemical aspects of the euphoria induced by dependence-producing drugs. In: Ideström CM (ed) Recent advances in the study of alcoholism (Excerpta Medica International Congress Series 407). Excerpta Medica, Amsterdam, pp 16–22

    Google Scholar 

  • Engel JA, Blomqvist O, Ericson M, Söderpalm B (1999) Neurochemical and behavioural studies on ethanol and nicotine interactions. In: Palomo T, Beninger RJ, Archer T (eds) Interactive monoaminergic basis of brain disorders. Editorial Sintesis, Madrid, pp 231–248

    Google Scholar 

  • Ericson M, Blomqvist O, Engel JA et al (1998) Voluntary ethanol intake in the rat and the associated accumbal dopamine overflow are blocked by ventral tegmental mecamylamine. Eur J Pharmacol 358:189–196

    Article  PubMed  CAS  Google Scholar 

  • Ericson M, Molander A, Löf E et al (2003) Ethanol elevates accumbal dopamine levels via indirect activation of ventral tegmental nicotinic acetylcholine receptors. Eur J Pharmacol 467:85–93

    Article  PubMed  CAS  Google Scholar 

  • Gommans J, Stolerman IP, Shoaib M (2000) Antagonism of the discriminative and aversive stimulus properties of nicotine in C57BL/ 6J mice. Neuropharmacology 39:2840–2847

    Article  PubMed  CAS  Google Scholar 

  • Grant KA (1994) Emerging neurochemical concepts in the actions of ethanol at ligand-gated ion channels. Behav Pharmacol 5:383–405

    Article  PubMed  CAS  Google Scholar 

  • Harris RA (1999) Ethanol action on multiple ion channels: which are important? Alcohol Clin Exp Res 23(10):1563–1570

    PubMed  CAS  Google Scholar 

  • Heidbreder CA, Hagan JJ (2005) Novel pharmacotherapeutic approaches for the treatment of drug addiction and craving. Curr Opin Pharmacol 5(1):107–118

    Article  PubMed  CAS  Google Scholar 

  • Holladay MW, Dart MJ, Lynch JK (1997) Neuronal nicotinic acetylcholine receptors as targets for drug discovery. J Med Chem 40:4169–4194

    Article  PubMed  CAS  Google Scholar 

  • Jerlhag E, Grötli M, Luthman K, Svensson L, Engel JA (2006) Role of the subunit composition of central nicotinic acetylcholine receptors for the stimulatory and dopamine-enhancing effects of ethanol in mice. Alcohol Alcohol doi:10.1093/alcalc/agl049

  • Klink R, de Kerchove d’Exaerde A, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21(5):1452–1463

    PubMed  CAS  Google Scholar 

  • Lança AJ, Adamson KL, Coen KM, Chow BL, Corrigall WA (2000) The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: a correlative neuroanatomical and behavioral study. Neuroscience 96:735–742

    Article  PubMed  Google Scholar 

  • Larsson A, Engel JA (2004) Neurochemical and behavioral studies on ethanol and nicotine interactions. Neurosci Biobehav Rev 27(8):713–720

    Article  PubMed  CAS  Google Scholar 

  • Larsson A, Svensson L, Söderpalm B, Engel JA (2002) Role of different nicotinic acetylcholine receptors in mediating behavioral and neurochemical effects of ethanol in mice. Alcohol 28:157–167

    Article  PubMed  CAS  Google Scholar 

  • Larsson A, Jerlhag E, Svensson L, Soderpalm B, Engel JA (2004) Is an alpha-conotoxin MII-sensitive mechanism involved in the neurochemical, stimulatory, and rewarding effects of ethanol? Alcohol 34(2–3):239–250

    Article  PubMed  CAS  Google Scholar 

  • Larsson A, Edstrom L, Svensson L, Soderpalm B, Engel JA (2005) Voluntary ethanol intake increases extracellular acetylcholine levels in the ventral tegmental area in the rat. Alcohol Alcohol 40(5):349–358

    PubMed  CAS  Google Scholar 

  • Laviolette SR, van der Kooy D (2004) The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci 5(1):55–65

    Article  PubMed  CAS  Google Scholar 

  • Lê AD, Corrigall WA, Harding JW, Juzytsch W, Li T-K (2000) Involvement of nicotinic receptors in alcohol self-administration. Alcohol Clin Exp Res 24:155–163

    Article  PubMed  Google Scholar 

  • Le Novere N, Corringer PJ, Changeux JP (2002) The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol 53(4):447–456

    Article  PubMed  CAS  Google Scholar 

  • Le AD, Li Z, Funk D, Shram M, Li TK, Shaham Y (2006) Increased vulnerability to nicotine self-administration and relapse in alcohol-naive offspring of rats selectively bred for high alcohol intake. J Neurosci 26(6):1872–1879

    Article  PubMed  CAS  Google Scholar 

  • Löf E (2006) Conditional and non-conditional reward-related responses to alcohol-nicotinic mechanisms. Thesus.Vasastadens Bokbinderi AB, Västra Frölunda ISBN:13:978-91-628-7008-9

  • Maisonneuve IM, Glick SD (2003) Anti-addictive actions of an iboga alkaloid congener: a novel mechanism for a novel treatment. Pharmacol Biochem Behav 75(3):607–618

    Article  PubMed  CAS  Google Scholar 

  • Mifsud J-C, Hernandez L, Hoebel BG (1989) Nicotine infused into the nucleus accumbens increases synaptic dopamine as measured by in vivo microdialysis. Brain Res 478:365–367

    Article  PubMed  CAS  Google Scholar 

  • Narahashi T, Aistrup GL, Marszalec W, Nagata K (1999) Neuronal nicotinic acetylcholine receptors: a new target site of ethanol. Neurochem Int 35:131–141

    Article  PubMed  CAS  Google Scholar 

  • Nisell M, Nomikos GG, Svensson TH (1994) Infusion of nicotine in the ventral tegmental area or the nucleus accumbens of the rat differentially affects accumbal dopamine release. Pharmacol Toxicol 75:348–352

    Article  PubMed  CAS  Google Scholar 

  • O’Dell TJ, Christensen BN (1988) Mecamylamine is a selective non-competitive antagonist of N-methyl-D-aspartate- and aspartate induced currents in horizontal cells dissociated from the catfish retina. Neurosci Lett 94:93–98

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Pickering C, Liljequist S (2003) Cue-induced behavioural activation: a novel model of alcohol craving? Psychopharmacology (Berl) 168:307–313

    Article  CAS  Google Scholar 

  • Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30(2):215–238

    Article  PubMed  CAS  Google Scholar 

  • Rada PV, Mark GP, Yeomans JJ, Hoebel BG (2000) Acetylcholine release in ventral tegmental area by hypothalamic self-stimulation, eating, and drinking. Pharmacol Biochem Behav 65:375–379

    Article  PubMed  CAS  Google Scholar 

  • Schilström B, Svensson HM, Svensson TH, Nomikos GG (1998) Nicotine and food induced dopamine release in the nucleus accumbens of the rat: putative role of _7 nicotinic receptors in the ventral tegmental area. Neuroscience 85:1005–1009

    Article  PubMed  Google Scholar 

  • Söderpalm B, Ericson M, Olausson P, Blomqvist O, Engel JA (2000) Nicotinic mechanisms involved in he dopamine activating and reinforcing properties of ethanol. Behav Brain Res 113:85–96

    Article  PubMed  Google Scholar 

  • Steensland P, Simms JA, Holgate J, Richards JK, Bartlett SE (2007) Varenicline, an α4β2 nicotinic acetylcholine receptor partial agonist, selectively decreases ethanol consumption and seeking. Proc Nat Am Soc 104:12518–12523

    Article  CAS  Google Scholar 

  • Turek JW, Kang CH, Campbell JE, Arneric SP, Sullivan JP (1995) A sensitive technique for the detection of the _7 neuronal nicotinic acetylcholine receptor antagonist, methyllycaconitine, in rat plasma and brain. J Neurosci Methods 61:113–118

    Article  PubMed  CAS  Google Scholar 

  • Vailati S, Hanke W, Bejan A, Barabino B, Longhi R, Balestra B, Moretti M, Clementi F, Gotti C (1999) Functional a6-containing nicotinic receptors are present in chick retina. Mol Pharmacol 56:11–19

    PubMed  CAS  Google Scholar 

  • Watkins SS, Epping-Jordan MP, Koob GF, Markou A (1999) Blockade of nicotine self-administration with nicotinic antagonists in rats. Pharmacol Biochem Behav 62(4):743–751

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225

    Article  PubMed  CAS  Google Scholar 

  • Wonnacott S, Albuquerque EX, Bertrand D (1993) Methyllycaconitine: a new probe that discriminates between nicotinic acetylcholine receptor subclasses. Methods Neurosci 12:263–275

    CAS  Google Scholar 

  • Wonnacott S, Sidhpura N, Balfour DJ (2005) Nicotine: from molecular mechanisms to behaviour. Curr Opin Pharmacol 5(1):53–59

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Criswell HE, Breese GR (1999) Action of ethanol on responses to nicotine from cerebellar interneurons and medial septal neurons: relationship to methyllycaconitine inhibition of nicotine responses. Alcohol Clin Exp Res 23:983–990

    PubMed  CAS  Google Scholar 

  • Yeomans JS (1995) Role of tegmental cholinergic neurons in dopaminergic activation, antimuscarinic psychosis and schizophrenia. Neuropsychopharmacology 12:3–16

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Engel JA, Liljequist S (1982) The effect of chronic ethanol administration of high affinity 3H-nicotinic binding in rat brain. Naunyn Schmiedebergs Arch Pharmacol 321:74–76

    Article  PubMed  CAS  Google Scholar 

  • Zanetti L, Picciotto MR, Zoli M (2007) Differential effects of nicotinic antagonists perfused into the nucleus accumbens or the ventral tegmental area on cocaine-induced dopamine release in the nucleus accumbens of mice. Psychopharmacology (Berl) 90(2):189–199

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Alcohol Research Council of the Swedish Retailing Monopoly, the Karolinska Institutet, the Swedish Labor Market Insurance (AFA), the Swedish Science Research Council (projects 4247, 7688, 15052), Wilhelm and Martina Lundgrens Scientific Foundation, Rådman and Fru Ernst Collianders Foundation, Stiftelsen Olle Engkvist Byggmästare, Knut and Alice Wallenberg Foundation, The Adlerbertska Foundation, the Filip Lundbergs Foundation, the Längmanska Cultural Foundation, and the Royal Society of Arts and Sciences in Göteborg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sture Liljequist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzmin, A., Jerlhag, E., Liljequist, S. et al. Effects of subunit selective nACh receptors on operant ethanol self-administration and relapse-like ethanol-drinking behavior. Psychopharmacology 203, 99–108 (2009). https://doi.org/10.1007/s00213-008-1375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1375-5

Keywords

Navigation