Skip to main content
Log in

Diverse and often opposite behavioural effects of NMDA receptor antagonists in rats: implications for “NMDA antagonist modelling” of schizophrenia

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Little attention has been paid to the relative equivalence of behavioural effects of NMDA receptor antagonists in rodents, with different compounds often used interchangeably to “model” aspects of schizophrenia in preclinical studies.

Objectives

To further resolve such conjecture, the present study systematically compared eight different NMDA receptor antagonists: MK-801, PCP, ketamine, memantine, SDZ 220,581, Ro 25-6981, CP 101-606 and NVP-AAM077, in a series of variable interval (VI) schedules of reinforcement. Aspects of motivation as indexed in these tasks may well be impaired in schizophrenia and undoubtedly impact on the capacity to perform more complex, explicit tasks of cognition.

Methods and results

An initial locomotor activity assessment demonstrated that all antagonists tested, except the NR2A-subunit preferring antagonist NVP-AAM077, induced hyperactivity, albeit of greatly differing magnitudes, qualities and temporal profiles. Three distinct patterns of antagonist effect were evident from the VI assays used: a uniform decrease in responding produced by (S)-(+)-ketamine, memantine and NVP-AAM077, a uniform increase in responding caused by the NR2B-subunit preferring antagonists Ro 25-6981 and CP 101-606, and variable bidirectional effects of PCP, SDZ 220,581 and MK-801.

Conclusion

Despite nominally common mechanisms of action and often presumed biological equivalence, the NMDA antagonists tested produced very diverse effects on the expression of instrumental action. Other aspects of responding were left intact, including switching and matching behaviours, and the ability to respond to conditional stimuli. The implications of such findings with regard to animal modelling of schizophrenic psychotic symptoms are manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of Variance

ISI:

inter-stimulus interval

LMA:

locomotor Activity

NMDA:

N-methyl-d-aspartate

PCP:

phencyclidine

SE:

standard error

VI:

variable interval

CS:

conditional stimulus

References

  • Adler CM, Malhotra AK, Elman I, Goldberg T, Egan M, Pickar D, Breier A (1999) Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. American Journal of Psychiatry 156(10):1646–1649

    PubMed  CAS  Google Scholar 

  • Andreasen NC (1982) Negative symptoms in schizophrenia. Definition and reliability. Arch Gen Psychiatry 39:784–788

    PubMed  CAS  Google Scholar 

  • Auberson YP, Allgeier H, Bischoff S, Lingenhoehl K, Moretti R, Schmutz M (2002) 5-Phosphonomethylquinoxalinediones as competitive NMDA receptor antagonists with a preference for the human 1A/2A, rather than 1A/2B receptor composition. Bioorg Med Chem Lett 12:1099–1102

    Article  PubMed  CAS  Google Scholar 

  • Badcock JC, Michie PT, Johnson L, Combrinck J (2002) Acts of control in schizophrenia: dissociating the components of inhibition. Psychol Med 32:287–297

    Article  PubMed  CAS  Google Scholar 

  • Bowdle TA, Radant AD, Cowley DS, Kharasch ED, Strassman RJ, Roy-Byrne PP (1998) Psychedelic effects of ketamine in healthy volunteers: relationship to steady-state plasma concentrations. Anesthesiology 88:82–88

    Article  PubMed  CAS  Google Scholar 

  • Castellani S, Adams PM (1981) Acute and chronic phencyclidine effects on locomotor activity, stereotypy and ataxia in rats. Eur J Pharmacol 73:143–154

    Article  PubMed  CAS  Google Scholar 

  • Chaperon F, Muller W, Auberson YP, Tricklebank MD, Neijt HC (2003) Substitution for PCP, disruption of prepulse inhibition and hyperactivity induced by N-methyl-d-aspartate receptor antagonists: preferential involvement of the NR2B rather than NR2A subunit. Behavioural Pharmacology 14(5–6):477–87

    PubMed  CAS  Google Scholar 

  • Chazot PL (2000) CP-101606 Pfizer Inc. Curr Opin Investig Drugs 1:370–374

    PubMed  CAS  Google Scholar 

  • Chenard BL, Bordner J, Butler TW, Chambers LK, Collins MA, De Costa DL, Ducat MF, Dumont ML, Fox CB, Mena EE (1995) (1S, 2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol: a potent new neuroprotectant which blocks N-methyl-d-aspartate responses. J Med Chem 38:3138–3145

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Tsai G, Goff D (2003) Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann N Y Acad Sci 1003:318–327

    Article  PubMed  CAS  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    PubMed  CAS  Google Scholar 

  • Domino EF, Chodoff P, Corssen G (1965) Pharmacologic effects of CI-581, a new dissociative anesthetic, in man. Clin Pharmacol Ther 6:279–291

    PubMed  CAS  Google Scholar 

  • Dunn MJ, Killcross S (2007) Clozapine, SCH 23390 and alpha-flupenthixol but not haloperidol attenuate acute phencyclidine-induced disruption of conditional discrimination performance. Psychopharmacology (Berl) 190:403–414

    Article  CAS  Google Scholar 

  • Fischer G, Mutel V, Trube G, Malherbe P, Kew JN, Mohacsi E, Heitz MP, Kemp JA (1997) Ro 25-6981, a highly potent and selective blocker of N-methyl-d-aspartate receptors containing the NR2B subunit. Characterization in vitro. J Pharmacol Exp Ther 283:1285–1292

    CAS  Google Scholar 

  • Frizelle PA, Chen PE, Wyllie DJ (2006) Equilibrium constants for (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2, 3-dioxo-1, 2, 3, 4-tetrahydroquino xalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) acting at recombinant NR1/NR2A and NR1/NR2B N-methyl-d-aspartate receptors: Implications for studies of synaptic transmission. Mol Pharmacol 70:1022–1032

    Article  PubMed  CAS  Google Scholar 

  • Gold JM, Waltz JA, Prentice KJ, Morris SE, Heerey EA (2008) Reward processing in schizophrenia: a deficit in the representation of value. Schizophr Bull 34:835–847

    Article  PubMed  Google Scholar 

  • Herrnstein RJ (1970) On the law of effect. J Exp Anal Behav 13:243–266

    Article  PubMed  CAS  Google Scholar 

  • Higgins GA, Ballard TM, Enderlin M, Haman M, Kemp JA (2005) Evidence for improved performance in cognitive tasks following selective NR2B NMDA receptor antagonist pre-treatment in the rat. Psychopharmacology (Berl) 179:85–98

    Article  CAS  Google Scholar 

  • Javitt DC (2004) Glutamate as a therapeutic target in psychiatric disorders. [Review] [189 refs]. Molecular Psychiatry 9(11):984-97, 979,

    Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    PubMed  CAS  Google Scholar 

  • Jensen J, Willeit M, Zipursky RB, Savina I, Smith AJ, Menon M, Crawley AP, Kapur S (2008) The formation of abnormal associations in schizophrenia: neural and behavioral evidence. Neuropsychopharmacology 33:473–479

    Article  PubMed  Google Scholar 

  • Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    Article  PubMed  CAS  Google Scholar 

  • Johnson JW, Kotermanski SE (2006) Mechanism of action of memantine. Curr Opin Pharmacol 6:61–67

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry 27:1081–1090

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick B, Fenton WS, Carpenter WT Jr, Marder SR (2006) The NIMH-MATRICS consensus statement on negative symptoms. Schizophr Bull 32:214–219

    Article  PubMed  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of General Psychiatry 51(3):199–214

    PubMed  CAS  Google Scholar 

  • Lofwall MR, Griffiths RR, Mintzer MZ (2006) Cognitive and subjective acute dose effects of intramuscular ketamine in healthy adults. Exp Clin Psychopharmacol 14:439–449

    Article  PubMed  CAS  Google Scholar 

  • Luby ED, Cohen BD, Rosembaum G, Gottlieb JS, Kelley R (1959) Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 81:363–369

    PubMed  CAS  Google Scholar 

  • Lynch DR, Guttmann RP (2001) NMDA receptor pharmacology: perspectives from molecular biology. Curr Drug Targets 2:215–231

    Article  PubMed  CAS  Google Scholar 

  • MacDonall JS (2005) Earning and obtaining reinforcers under concurrent interval scheduling. J Exp Anal Behav 84:167–183

    Article  PubMed  Google Scholar 

  • Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, Breier A (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14(5):301–307

    Article  PubMed  CAS  Google Scholar 

  • Menniti F, Chenard B, Collins M, Ducat M, Shalaby I, White F (1997) CP-101, 606, a potent neuroprotectant selective for forebrain neurons. Eur J Pharmacol 331:117–126

    Article  PubMed  CAS  Google Scholar 

  • Micallef J, Tardieu S, Gentile S, Fakra E, Jouve E, Sambuc R, Blin O (2003) Effects of a subanaesthetic dose of ketamine on emotional and behavioral state in healthy subjects. Neurophysiol Clin 33:138–147

    Article  PubMed  CAS  Google Scholar 

  • Murray F, Kennedy J, Hutson PH, Elliot J, Huscroft I, Mohnen K, Russell MG, Grimwood S (2000) Modulation of [3H]MK-801 binding to NMDA receptors in vivo and in vitro. Eur J Pharmacol 397:263–270

    Article  PubMed  CAS  Google Scholar 

  • Mutel V, Buchy D, Klingelschmidt A, Messer J, Bleuel Z, Kemp JA, Richards JG (1998) In vitro binding properties in rat brain of [3H]Ro 25–6981, a potent and selective antagonist of NMDA receptors containing NR2B subunits. J Neurochem 70:2147–2155

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima T, Fukaya H, Yamaguchi K, Ishikawa K, Furukawa H, Kameyama T (1987) Development of tolerance and supersensitivity to phencyclidine in rats after repeated administration of phencyclidine. Eur J Pharmacol 135:23–33

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603

    Article  PubMed  CAS  Google Scholar 

  • Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, Craft S, Olney JW (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20:106–118

    Article  PubMed  CAS  Google Scholar 

  • Nicholson KL, Mansbach RS, Menniti FS, Balster RL (2007) The phencyclidine-like discriminative stimulus effects and reinforcing properties of the NR2B-selective N-methyl-d-aspartate antagonist CP-101 606 in rats and rhesus monkeys. Behav Pharmacol 18:731–743

    Article  PubMed  CAS  Google Scholar 

  • Passie T, Karst M, Wiese B, Emrich HM, Schneider U (2005) Effects of different subanesthetic doses of (S)-ketamine on neuropsychology, psychopathology, and state of consciousness in man. Neuropsychobiology 51:226–233

    Article  PubMed  CAS  Google Scholar 

  • Sanger DJ, Jackson A (1989) Effects of phencyclidine and other N-methyl-d-aspartate antagonists on the schedule-controlled behavior of rats. J Pharmacol Exp Ther 248:1215–1221

    PubMed  CAS  Google Scholar 

  • Smith RC, Biggs C, Vroulis G, Brinkman S (1981) Effects of chronic administration of phencyclidine on stereotyped and ataxic behaviors in the rat. Life Sci 28:1163–1174

    Article  PubMed  CAS  Google Scholar 

  • Stephenson FA (2001) Subunit characterization of NMDA receptors. Curr Drug Targets 2:233–239

    Article  PubMed  CAS  Google Scholar 

  • Urwyler S, Laurie D, Lowe DA, Meier CL, Muller W (1996) Biphenyl-derivatives of 2-amino-7-phosphonoheptanoic acid, a novel class of potent competitive N-methyl-d-aspartate receptor antagonist—I. Pharmacological characterization in vitro. Neuropharmacology 35:643–654

    PubMed  CAS  Google Scholar 

  • Wang CX, Shuaib A (2005) NMDA/NR2B selective antagonists in the treatment of ischemic brain injury. Curr Drug Targets CNS Neurol Disord 4:143–151

    Article  PubMed  CAS  Google Scholar 

  • Wang XM, Bausch SB (2004) Effects of distinct classes of N-methyl-d-aspartate receptor antagonists on seizures, axonal sprouting and neuronal loss in vitro: suppression by NR2B-selective antagonists. Neuropharmacology 47(7):1008–1020

    Article  PubMed  CAS  Google Scholar 

  • Wenzel A, Scheurer L, Kunzi R, Fritschy JM, Mohler H, Benke D (1995) Distribution of NMDA receptor subunit proteins NR2A, 2B, 2C and 2D in rat brain. Neuroreport 7:45–48

    PubMed  CAS  Google Scholar 

  • Xu X, Domino EF (1994) Asymmetric cross-sensitization to the locomotor stimulant effects of phencyclidine and MK-801. Neurochem Int 25:155–159

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Gilmour.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table 1. Supplementary material:

Statistical analysis for Figure 1 (DOC 18 kb)

Table 2. Supplementary material:

Statistical analysis for Figure 2 (DOC 18 kb)

Table 3. Supplementary material:

Statistical analysis for Figure 3 (DOC 25 kb)

Table 4. Supplementary material:

Statistical analysis for Figure 4 (DOC 32 kb)

Table 5. Supplementary material:

Statistical analysis for Figure 5 (DOC 53 kb)

Table 6. Supplementary material:

Statistical analysis for Figure 6 (DOC 80 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilmour, G., Pioli, E.Y., Dix, S.L. et al. Diverse and often opposite behavioural effects of NMDA receptor antagonists in rats: implications for “NMDA antagonist modelling” of schizophrenia. Psychopharmacology 205, 203–216 (2009). https://doi.org/10.1007/s00213-009-1530-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1530-7

Keywords

Navigation