Skip to main content
Log in

D1 and D2 dopamine receptors differentially mediate the activation of phosphoproteins in the striatum of amphetamine-sensitized rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Extracellular signal-regulated kinase (ERK), cAMP response element binding protein (CREB), and protein kinase B (PKB or Akt) in the striatum are differentially activated by acute and repeated amphetamine (AMPH) administration. However, the dopamine receptor subtypes that mediate transient vs. prolonged phosphorylation changes in these proteins induced by AMPH challenge in AMPH-sensitized rats are unknown.

Objectives

The role of the D1 and D2 class of dopamine receptors in the differential phosphorylation of striatal ERK, CREB, Thr308-Akt and Ser473-Akt and the expression of behavioral sensitization induced by AMPH challenge in AMPH-pretreated rats were determined.

Methods

D1 or D2 dopamine receptor antagonists were injected before an AMPH challenge in AMPH-sensitized rats. After behavioral activity was recorded, rats were euthanized either 15 min or 2 h after AMPH challenge and striatal phosphoprotein status was analyzed by Western blotting.

Results

The D1 receptor antagonist (SCH23390) decreased stereotypical behavior whereas the D2 receptor antagonist (eticlopride) decreased all behavioral activity induced by an AMPH challenge in AMPH-sensitized rats. SCH23390, but not eticlopride, significantly decreased ERK, CREB, and Thr308-Akt phosphorylation in the striatum 15 min, and ERK and CREB phosphorylation 2 h, after AMPH challenge in AMPH-sensitized rats. In contrast, eticlopride, but not SCH23390, prevented a decrease in Akt phosphorylation 2 h after AMPH challenge.

Conclusions

These data indicate that the time course of phosphoprotein signaling is differentially regulated by D1 and D2 receptors in the striatum of AMPH-sensitized rats, suggesting that complex regulatory interactions are activated by repeated AMPH exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alessi DR, Andjekovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    PubMed  CAS  Google Scholar 

  • Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG (2005) An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu JM, Tirotta E, Sotnikova TD, Masri B, Salahpour A, Gainetdinov RR et al (2007) Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo. J Neurosci 27:881–885

    Article  PubMed  CAS  Google Scholar 

  • Bertran-Gonzalez J, Bosch C, Maroteaux M, Matamales M, Herve D, Valjent E et al (2008) Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 28:5671–5685

    Article  PubMed  CAS  Google Scholar 

  • Brami-Cherrier K, Valjent E, Garcia M, Pages C, Hipskind RA, Caboche J (2002) Dopamine induces a PI3-kinase-independent activation of Akt in striatal neurons: a new route to cAMP response element-binding protein phosphorylation. J Neurosci 22:8911–8921

    PubMed  CAS  Google Scholar 

  • Cole RL, Konradi C, Douglass JO, Hyman SE (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene expression in rat striatum. Neuron 14:813–823

    Article  PubMed  CAS  Google Scholar 

  • Durieux PF, Bearzatto B, Guiducci S, Buch T, Waisman A, Zoli M et al (2009) D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat Neurosci 12:393–395

    Article  PubMed  CAS  Google Scholar 

  • Ellinwood EH Jr, Balster RL (1974) Rating the behavioral effects of amphetamine. Eur J Pharmacol 28:35–41

    Article  PubMed  CAS  Google Scholar 

  • Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA (2004) Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat Genet 36:131–137

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee KH et al (2001) Akt participation in the Wnt signaling pathway through dishevelled. J Biol Chem 20:17479–17483

    Article  Google Scholar 

  • Garrett BE, Holtzman SG (1994) D1 and D2 dopamine receptor antagonists block caffeine-induced stimulation of locomotor activity in rats. Pharmacol Biochem Behav 47:89–94

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15:133–139

    Article  PubMed  CAS  Google Scholar 

  • Girault JA, Valjent E, Caboche J, Herve D (2007) ERK2: a logical AND gate critical for drug-induced plasticity. Curr Opin Pharmacol 7:777–785

    Article  Google Scholar 

  • Hresko RC, Mueckler M (2005) mTOR-RICTOR is the Ser473 kinase for Akt/Protein kinase B in 3 T3-L1 adipocytes. J Biol Chem 280:40406–40416

    Article  PubMed  CAS  Google Scholar 

  • Izzo E, Martin-Fardon R, Koob GF, Weiss F, Sanna PP (2002) Neural plasticity and addiction: PI3-kinase and cocaine behavioral sensitization. Nat Neurosci 5:1263–1264

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of psychostimulant-induced behavioral sensitization. Brain Res Rev 16:223–244

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE (2001) Measurement of rodent stereotyped behavior. In: Crawley JN, Gerfen CR, Rogawski MA, Sibley DR, Skolnick P, Wray S (eds) Current Protocols in Neuroscience. Wiley, New York, pp 8.8.1–8.8.13

    Google Scholar 

  • Licata SC, Pierce RC (2003) The roles of calcium/calmodulin-dependent and Ras/mitogen-activated protein kinases in the development of psychostimulant-induced behavioral sensitization. J Neurochem 85:14–22

    Article  PubMed  CAS  Google Scholar 

  • Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J Biol Chem 273:13375–13378

    Article  PubMed  CAS  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki T, Ofengeim D, Noh K-M, Latuszek-Barrantes A, Hemmings BA, Follenzi A, Zukin RS (2009) The endogenous inhibitor, CTMP, is critical to ischemia-induced neuronal death. Nat Neurosci 12:618–626

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ (2004) Molecular mechanisms of drug addiction. Neuropharmacology 47:24–32

    Article  PubMed  CAS  Google Scholar 

  • Pozzi L, Hakansson K, Usiello A, Borgkvist A, Lindskog M, Greengard P et al (2003) Opposite regulation by typical and atypical anti-psychotics of ERK1/2, CREB and Elk-1 phosphorylation in mouse dorsal striatum. J Neurochem 86:451–459

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291

    Article  PubMed  CAS  Google Scholar 

  • Romanelli RJ, Williams JT, Neve KA (2010) Dopamine receptor signaling: Intracellular pathways to behavior. In: Neve KA (ed) The Dopamine Receptors, 2nd edn. Humana, Totawa, pp 137–173

    Chapter  Google Scholar 

  • Shi X, McGinty JF (2007) Repeated amphetamine treatment increases phosphorylation of extracellular signal-regulated kinase, protein kinase B, and cyclase response element-binding protein in the rat striatum. J Neurochem 103:706–713

    Article  PubMed  CAS  Google Scholar 

  • Simpson JN, Wang JQ, McGinty JF (1995) Repeated amphetamine administration induces a prolonged augmentation of phosphorylated cyclase response element binding protein and Fos-related antigen immunoreactivity in rat striatum. Neuroscience 69:441–4457

    Article  PubMed  CAS  Google Scholar 

  • Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    Article  PubMed  CAS  Google Scholar 

  • Stoof JC, Kebabian JW (1981) Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 294:366–368

    Article  PubMed  CAS  Google Scholar 

  • Ushijima I, Carino MA, Horita A (1995) Involvement of D1 and D2 systems in the behavioral effects of cocaine in rats. Pharmacol Biochem Behav 52:737–741

    Article  PubMed  CAS  Google Scholar 

  • Valjent E, Corvol J-C, Pages C, Besson M-J, Maldanado R, Caboche J (2000) Involvement of extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J Neurosci 20:8701–8709

    PubMed  CAS  Google Scholar 

  • Valjent E, Pages C, Herve D, Girault J-A, Caboche J (2004) Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. Eur J Neurosci 19:1826–1836

    Article  PubMed  Google Scholar 

  • Valjent E, Pascoll V, Svenningsson P, Paul S, Corvol J-C, Stipanovich A et al (2005) Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci USA 102:491–496

    Article  PubMed  CAS  Google Scholar 

  • Valjent E, Corvol J-C, Trzaskos JM, Girault J-A, Herve D (2006) Role of the ERK pathway in psychostiimulant-induced locomotor sensitization. BMC Neurosci 7:20

    Article  PubMed  Google Scholar 

  • Valjent E, Bertran-Gonzalez J, Hervé D, Fisone G, Girault JA (2009) Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice. Trends Neurosci 32:538–547

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacol Berl 151:99–120

    Article  CAS  Google Scholar 

  • Wang JQ, McGinty JF (1995a) Alterations in striatal zif/268, preprodynorphin and preproenkephalin mRNA expression induced by repeated amphetamine administration in rats. Brain Res 673:262–274

    Article  PubMed  CAS  Google Scholar 

  • Wang JQ, McGinty JF (1995b) Differential effects of D1 or D2 dopamine receptors antagonists on acute amphetamine- and methamphetamine-induced upregulation of zif/268 mRNA expression in rat forebrain. J Neurochem 65:2706–2715

    Article  PubMed  CAS  Google Scholar 

  • Wang JQ, McGinty JF (1997) The full D1 dopamine receptor agonist SKF-82958 induces neuropeptide mRNA in the normosensitive striatum of rats: Regulation of D1/D2 interactions by muscarinic receptors. J Pharmacol Exp Ther 281:972–982

    PubMed  CAS  Google Scholar 

  • Wolf ME, Jeziorski M (1993) Coadministration of MK-801 with amphetamine, cocaine or morphine prevents rather than transiently masks the development of behavioral sensitization. Brain Res 613:291–294

    Article  PubMed  CAS  Google Scholar 

  • Wolf ME, Sun X, Mangiavacchi S, Chao SZ (2004) Psychomotor stimulants and neuronal plasticity. Neuropharmacology 47:61–79

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Feng J, Fienberg AA, Greengard P (1999) D(2) dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proc Natl Acad Sci USA 96:11607–11612

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Lou D, Jiao H, Zhang D, Wang X, Xia Y et al (2004) Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D1and D3 receptors. J Neurosci 24:3344–3354

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by NIH RO1 DA03982 and CO6 RR015455

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline F. McGinty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (DOC 1396 kb)

ESM2 (DOC 1492 kb)

ESM3 (DOC 1999 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., McGinty, J.F. D1 and D2 dopamine receptors differentially mediate the activation of phosphoproteins in the striatum of amphetamine-sensitized rats. Psychopharmacology 214, 653–663 (2011). https://doi.org/10.1007/s00213-010-2068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2068-4

Keywords

Navigation