Skip to main content
Log in

An analysis of avidin, biotin and their interaction at attomole levels by voltammetric and chromatographic techniques

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The electroanalytical determination of avidin in solution, in a carbon paste, and in a transgenic maize extract was performed in acidic medium at a carbon paste electrode (CPE). The oxidative voltammetric signal resulting from the presence of tyrosine and tryptophan in avidin was observed using square-wave voltammetry. The process could be used to determine avidin concentrations up to 3 fM (100 amol in 3 μl drop) in solution, 700 fM (174 fmol in 250 μl solution) in an avidin-modified electrode, and 174 nM in a maize seed extract. In the case of the avidin-modified CPE, several parameters were studied in order to optimize the measurements, such as electrode accumulation time, composition of the avidin-modified CPE, and the elution time of avidin. In addition, the avidin-modified electrode was used to detect biotin in solution (the detection limit was 7.6 pmol in a 6 μl drop) and to detect biotin in a pharmaceutical drug after various solvent extraction procedures. Comparable studies for the detection of biotin were developed using HPLC with diode array detection (HPLC-DAD) and flow injection analysis with electrochemical detection, which allowed biotin to be detected at levels as low as 614 pM and 6.6 nM, respectively. The effects of applied potential, acetonitrile content, and flow rate of the mobile phase on the FIA-ED signal were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zempleni J, Mock DM (1999) J Nutr Biochem 10:128–138

    Article  Google Scholar 

  2. Zempleni J, McCormick DB, Stratton SL, Mock DM (1996) J Nutr Biochem 7:518–523

    Article  Google Scholar 

  3. Diamandis EP, Christopoulos TK (1991) Clin Chem 37:625–636

    Google Scholar 

  4. Aboul-Enein HY, Hussein RF, Radwan MA, Al-Rawithi S (2004) J Liq Chromatogr R T 27:511–519

    Article  Google Scholar 

  5. Ekpe AE, Hazen C (1998) J Pharmaceut Biomed 16:1311–1315

    Article  Google Scholar 

  6. Gadzala-Kopeiuch R, Szumski M, Buszewski B (2003) J Liq Chromatogr R T 26:195–205

    Article  Google Scholar 

  7. Kamata K, Hagiwara T, Takahashi M, Uehara S, Nakayama K, kiyamata K (1986) J Chromatogr 356:326–330

    Article  Google Scholar 

  8. Green NM (1975) Adv Protein Chem 29:85–133

    CAS  PubMed  Google Scholar 

  9. Green NM (1990) Method Enzymol 184:51–67

    Google Scholar 

  10. Wilchek M, Bayer EA (1990) Method Enzymol 184:5–13

    Google Scholar 

  11. Havran L, Billova S, Palecek E (2004) Electroanalysis 16:1139–1148

    Article  Google Scholar 

  12. Harmon FR, Berger M, Beegen H, Wood HG (1980) J Biol Chem 255:9458–9464

    Google Scholar 

  13. Reyes FD, Romero JMF, de Castro MDL (2002) Anal Bioanal Chem 372:366–372

    Article  Google Scholar 

  14. Masarik M, Kizek R, Kramer KJ, Billova S, Brazdova M, Vacek J, Bailey M, Jelen F, Howard JA (2003) Anal Chem 75:2663–2669

    Article  Google Scholar 

  15. Athey D, Ball M, McNeil CJ (1993) Ann Clin Biochem 30:570–577

    Google Scholar 

  16. Wang J, Cai C, Rivas G, Shiraishi H, Farias PAM, Dontha N (1996) Anal Chem 68:2629–2634

    Article  Google Scholar 

  17. Reyes FD, Romero JMF, de Castro MDL (2001) Anal Chim Acta 436:109–117

    Article  Google Scholar 

  18. Wolf R, Huschka C, Raith K, Wohlrab W, Neubert R (1997) Anal Commun 34:335–337

    Article  Google Scholar 

  19. Nardone E, Rosano C, Santambrogio P, Curnis F, Corti A, Magni F, Siccardi AG, Paganelli G, Losso R, Apreda B, Bolognesi M, Sidoli A, Arosio P (1998) Eur J Biochem 256:453–460

    Article  Google Scholar 

  20. Lahely S, Ndaw S, Arella F, Hasselmann C (1999) Food Chem 65:253–258

    Article  Google Scholar 

  21. Kuramitz H, Sugawara K, Tanaka S (2000) Electroanalysis 12:1299–1303

    Article  Google Scholar 

  22. Kuramitz H, Natsui J, Tanaka S, Hasebe K (2000) Electroanalysis 12:588–592

    Article  Google Scholar 

  23. Kuramitz H, Matsuda M, Sugawara K, Tanaka S (2003) Electroanalysis 15:225–229

    Article  Google Scholar 

  24. Sugawara K, Tanaka S, Nakamura H (1994) Bioelectroch Bioener 33:205–207

    Article  Google Scholar 

  25. Sugawara K, Yamauchi Y, Hoshi S, Akatsuka K, Yamamoto F, Tanaka S, Nakamura H (1996) Bioelectroch Bioener 41:167–172

    Article  Google Scholar 

  26. Snejdarkova M, Rehak M, Otto M (1993) Anal Chem 65:665

    Google Scholar 

  27. Hianik T, Snejdarkova M, Passechnik VI, Rehak M, Babincova M (1996) Bioelectroch Bioener 41:221

    Article  Google Scholar 

  28. Silman RW (1993) Biotechnol Adv 11:IN7-IN8

    Article  Google Scholar 

  29. Glicka BR, Skofb YW (1986) Biotechnol Adv 4:261–277

    Article  Google Scholar 

  30. Alonso-Salces RM, Korta E, Barranco A, Berrueta LA, Gallo B, Vicente F (2001) J Chromatogr A 933:37–43

    Article  Google Scholar 

  31. Kramer KJ, Morgan TD, Throne JE, Dowell FE, Bailey M, Howard JA (2000) Nat Biotechnol 18:670–674

    Article  Google Scholar 

  32. Kramer KJ (2004) In: Liang GH, Skinner DZ (eds) Genetic transformation in crop plants. Haworth, New York (in press)

  33. Markwick NP, Christeller JT, Docherty LC, Lilley CM (2001) Entomol Exp Appl 98:59–66

    Google Scholar 

  34. Morgan TD, Oppert B, Czapla TH, Kramer KJ (1993) Entomol Exp Appl 69:97–108

    Google Scholar 

  35. Sugawara K, Tanaka S, Nakamura H (1995) Anal Chem 67:299–302

    Google Scholar 

  36. Wang J (1985) Stripping analysis. VCH, Deerfield Beach, FL

    Google Scholar 

  37. Wang J, Bollo S, Paz JLL, Sahlin E, Mukherjee B (1999) Anal Chem 71:1910–1913

    Article  Google Scholar 

  38. Wang J, Cai C, Fernandes JR, Grant DH, Ozsoz M (1997) Anal Chem 69:4056–4059

    Article  Google Scholar 

  39. Wang J, Grundler P, Flechsig G-U, Jasinski M, Rivas G, Sahlin E, Paz JLL (2000) Anal Chem 72:3752–3756

    Article  Google Scholar 

  40. Wang J, Lin MS (1988) Anal Chem 60:1545–1548

    Google Scholar 

  41. Wang J, Lin MS (1989) Electroanalysis 1:43–48

    Google Scholar 

  42. Wang J, Lin MS (1989) Anal Chim Acta 218:281–290

    Article  Google Scholar 

  43. Wang J, Liu J, Cepra G (1997) Anal Chem 69:3124–3127

    Article  Google Scholar 

  44. Oriakova R, Trnkova L, Galova M, Supicova M (2004) Electrochim Acta 49:3587–3594

    Article  Google Scholar 

  45. Wang J, Musameh M, Lin YH (2003) J Am Chem Soc 125:2408–2409

    Article  Google Scholar 

  46. Wang J, Xu DK, Polsky R (2002) J Am Chem Soc 124:4208–4208

    Article  Google Scholar 

  47. Wang J, Liu GD, Jan MR (2004) J Am Chem Soc 126:3010–3011

    Article  Google Scholar 

  48. Kubiak WW, Wang J (1989) Anal Chim Acta 221:43–51

    Article  Google Scholar 

  49. Kulys J, Wang LZ, Razumas V (1992) Electroanalysis 4:527–532

    Google Scholar 

  50. Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey M, Flynn P, Register J, Marshall L, Bond D, Kulisek E, Kusnadi A, Evangelista R, Nikolov Z, Wooge C, Mehigh RJ, Herman R, Kappel WK, Ritland D, Li CP, Howard J (1997) Mol Breeding 3:291–306

    Article  Google Scholar 

  51. Ong ES, Len SM (2003) Anal Chim Acta 482:81–89

    Article  Google Scholar 

  52. Causon R (1997) J Chromatogr B 689:175–180

    Article  CAS  Google Scholar 

  53. Bugianesi R, Serafini M, Simone F, Wu DY, Meydani S, Ferro-Luzzi A, Azzini E, Maiani G (2000) Anal Biochem 284:296–300

    Article  Google Scholar 

  54. Brabec V, Mornstein V (1980) Biochim Biophys Acta 625:43–50

    Google Scholar 

  55. MacDonald SM, Roscoe SG (1997) Electrochim Acta 42:1189–1200

    Article  Google Scholar 

  56. Palecek E, Postbieglova I (1986) J Electroanal Chem 214:359–371

    Article  Google Scholar 

  57. Kizek R, Trnkova L, Palecek E (2001) Anal Chem 73:4801–4807

    Article  Google Scholar 

  58. Prusa R, Kizek R, Trnkova L, Vacek J, Zehnalek J (2004) Clin Chem 50:A96

    Google Scholar 

  59. Fernandez-Sanchez C, Gonzalez-Garcia MB, Costa-Garcia A (2000) Biosens Bioelectron 14:917–924

    Article  Google Scholar 

  60. Hood EE, Bailey MR, Beifuss K, Magallanes-Lundback M, Horn ME, Callaway E, Drees C, Delaney DE, Clough R, Howard JA (2003) Plant Biotechnol J 1:129–140

    Article  Google Scholar 

  61. Horn ME, Woodard SL, Howard JA (2004) Plant Cell Rep 22:711–720

    Article  Google Scholar 

  62. Yu J, Langridge WHR (2001) Nat Biotechnol 19:548–552

    Article  Google Scholar 

  63. Zeitlin L, Olmsted SS, Moench TR, Co MS, Martinell BJ, Paradkar VM, Russell DR, Queen C, Cone RA, Whaley KJ (1998) Nat Biotechnol 16:1361–1364

    Article  Google Scholar 

  64. Hiatt A, Cafferkey R, Bowdish K (1989) Nature 342:76–78

    Google Scholar 

  65. Markwick NP, Docherty LC, Phung MM, Lester MT, Murray C, Yao JL, Mitra DS, Cohen D, Beuning LL, Kutty-Amma S, Christeller JT (2003) Transgenic Res 12:671–681

    Article  Google Scholar 

  66. Yoza K, Imamura T, Kramer KJ, Morgan TD, Yaguchi M, Nakamura S, Kawasaki S, Takaiwa F, Ohtsubo K (2003) In: Proc 32nd US-Japan Cooperative Program in Natural Resources (UJNR): Food and Agriculture Panel, 9–15 November 2003, Tsukuba, Japan, pp 207–211

  67. Kulomaa MS, Nordlund HR, Hytonen VP, Nyholm TKM, Uotila STH, Porkka EJ, Laitinen OH (2004) Biophys J 86:95A

    Google Scholar 

  68. Buckley E, Alvarez FJM, Smyth MR, OK R (1991) Electroanalysis 3:43–47

    Google Scholar 

  69. Hoshi T, Anzai J, Osa T (1994) Anal Chim Acta 289:321–327

    Article  Google Scholar 

  70. Klejdus B, Petrlova J, Potesil D, Adam V, Mikelova R, Vacek J, Kizek R, Kuban V (2004) Anal Chim Acta 520:57–67

    Article  Google Scholar 

  71. ESA, Inc. (2001) CoulArray detector operating manual. ESA, Chelmsford, USA

  72. Klejdus B, Kizek R, Vacek J, Zehnalek J, Trnkova L, Kuban V (2004) J Chromatogr B 806:101–111

    Article  Google Scholar 

  73. Kirkup L, Foot M, Mulholland M (2004) J Chromatogr A 1–2:25–31

  74. Klejdus B, Mikelova M, Adam V, Kizek R, Kuban V (2004) Anal Chim Acta 517:1–11

    Article  Google Scholar 

  75. Klejdus B, Zehnalek J, Adam V, Petrek J, Kizek R, Vacek J, Trnkova L, Rozik R, Havel L, Kuban V (2004) Anal Chim Acta 520:117–12

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants: GA CR No. 525/04/P132, No. 203/02/0422, MSMT No. LN 00A081, GAAV No. A1163201 and IGA MZLU No. 3/2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Kizek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kizek, R., Masarik, M., Kramer, K.J. et al. An analysis of avidin, biotin and their interaction at attomole levels by voltammetric and chromatographic techniques. Anal Bioanal Chem 381, 1167–1178 (2005). https://doi.org/10.1007/s00216-004-3027-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-3027-x

Keywords

Navigation