Skip to main content
Log in

Recent advances in fluorescent probes for the detection of reactive oxygen species

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) have captured the interest of many researchers in the chemical, biological, and medical fields since they are thought to be associated with various pathological conditions. Fluorescent probes for the detection of ROS are promising tools with which to enhance our understanding of the physiological roles of ROS, because they provide spatial and temporal information about target biomolecules in in vivo cellular systems. ROS probes, designed to detect specific ROS with a high selectivity, would be desirable, since it is now becoming clear that each ROS has its own unique physiological activity. However, dihydro-compounds such as 2′,7′-dichlorodihydrofluorescein (DCFH), which have traditionally been used for detecting ROS, tend to react with a wide variety of ROS and are not completely photostable. Some attractive fluorescent probes that exhibit a high degree of selectivity toward specific ROS have recently been reported, and these selective probes are expected to have great potential for elucidating unknown physiological mechanisms associated with their target ROS. This review focuses on the design, detection mechanism, and performance of fluorescent probes for the detection of singlet oxygen (1O2), hydrogen peroxide (H2O2), hydroxyl radicals (.OH), or superoxide anion (O2 −.), a field in which remarkable progress has been achieved in the last few years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Halliwell B, Gutteridge JMC (1999) (eds) Free radicals in biology and medicine, 3rd edn. Clarendon, Oxford

    Google Scholar 

  2. Forman HJ, Fukuto JM, Torres M (2004) Am J Physiol Cell Physiol 287:C246–C256

    Article  CAS  Google Scholar 

  3. Esposito F, Ammendola R, Faraonio R, Russo T, Cimino F (2004) Neurochem Res 29:617–628

    Article  CAS  Google Scholar 

  4. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA (2000) Free Radical Biol Med 28:1456–1462

    Article  CAS  Google Scholar 

  5. Bredt DS, Snyder SH (1994) Annu Rev Biochem 63:175–195

    Article  CAS  Google Scholar 

  6. Iida Y, Katusic ZS (2000) Stroke 31:2224–2229

    CAS  Google Scholar 

  7. Tatla S, Woodhead V, Foreman JC, Chain BM (1999) Free Radical Biol Med 26:14–24

    Article  CAS  Google Scholar 

  8. Tsien RY (1980) Biochemistry 19:2396–2404

    Article  CAS  Google Scholar 

  9. Grynkiewicz G, Poenie M, Tsien RY (1985) J Biol Chem 260:3440–3450

    CAS  Google Scholar 

  10. Minta A, Kao JPY, Tsien RY (1989) J Biol Chem 264:8171–8178

    CAS  Google Scholar 

  11. Tsien RY, Pozzan T (1989) Methods Enzymol 172:230–244

    CAS  Google Scholar 

  12. LeBel CP, Ischiropoulos H, Bondy SC (1992) Chem Res Toxicol 5:227–231

    Article  CAS  Google Scholar 

  13. Oyama Y, Hayashi A, Ueha T, Maekawa K (1994) Brain Res 635:113–117

    Article  CAS  Google Scholar 

  14. Henderson LM, Chappell JB (1993) Eur J Biochem 217:973–980

    Article  CAS  Google Scholar 

  15. Wersto RP, Rosenthal ER, Crystal RG, Spring KR (1996) Proc Natl Acad Sci USA 93:1167–1172

    Article  CAS  Google Scholar 

  16. Keller A, Mohamed A, Drose S, Brandt U, Fleming I, Brandes RP (2004) Free Radical Res 38:1257–1267

    Article  CAS  Google Scholar 

  17. Rothe G, Valet G (1990) J Leukoc Biol 47:440–448

    CAS  Google Scholar 

  18. Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) Anal Biochem 253:162–168

    Article  CAS  Google Scholar 

  19. Chen CS, Gee KR (2000) Free Radical Biol Med 28:1266–1278

    Article  CAS  Google Scholar 

  20. Marchesi E, Rota C, Fann YC, Chignell CF, Mason RP (1999) Free Radical Biol Med 26:148–161

    Article  CAS  Google Scholar 

  21. Rota C, Chignell CF, Mason RP (1999) Free Radical Biol Med 27:873–881

    Article  CAS  Google Scholar 

  22. Afzal M, Matsugo S, Sasaki M, Xu B, Aoyama K, Takeuchi T (2003) Biochem Biophys Res Commun 304:619–624

    Article  CAS  Google Scholar 

  23. Kooy NW, Royall JA, Ischiropoulos H (1997) Free Radical Res 27:245–254

    CAS  Google Scholar 

  24. Yoshida Y, Shimakawa S, Itoh N, Niki E (2003) Free Radical Res 37:861–872

    Article  CAS  Google Scholar 

  25. Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Free Radical Biol Med 27:146–159

    Article  CAS  Google Scholar 

  26. Wardman P, Burkitt MJ, Patel KB, Lawrence A, Jones CM, Everett SA, Vojnovic B (2002) J Fluorescence 12:65–68

    Article  Google Scholar 

  27. Nagano T, Yoshimura T (2002) Chem Rev 102:1235–1269

    Article  CAS  Google Scholar 

  28. Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Anal Chem 70:2446–2453

    Article  CAS  Google Scholar 

  29. Sasaki E, Kojima H, Nishimatsu H, Urano Y, Kikuchi K, Hirata Y, Nagano T (2005) J Am Chem Soc 127:3684–3685

    Article  CAS  Google Scholar 

  30. Meineke P, Rauen U, de Groot H, Korth H-G, Sustmann R (1999) Chem Eur J 5:1738–1747

    Article  CAS  Google Scholar 

  31. Franz KJ, Singh N, Lippard SJ (2000) Angew Chem Int Ed 39:2120–2122

    Article  CAS  Google Scholar 

  32. Lim MH, Lippard SJ (2005) J Am Chem Soc 127:12170–12171

    Article  CAS  Google Scholar 

  33. Soh N, Katayama Y, Maeda M (2001) Analyst 126:564–566

    Article  CAS  Google Scholar 

  34. Katayama Y, Soh N, Maeda M (2001) Chemphyschem 2:655–661

    Article  CAS  Google Scholar 

  35. Katayama Y, Soh N, Maeda M (2002) Bull Chem Soc Jpn 75:1681–1691

    Article  CAS  Google Scholar 

  36. Soh N, Imato T, Kawamura K, Maeda M, Katayama Y (2002) Chem Commun 2650–2651

  37. Steinbeck MJ, Khan AU, Karnovsky MJ (1992) J Biol Chem 267:13425–13433

    CAS  Google Scholar 

  38. Umezawa N, Tanaka K, Urano Y, Kikuchi K, Higuchi T, Nagano T (1999) Angew Chem Int Ed 38:2899–2901

    Article  CAS  Google Scholar 

  39. Tanaka K, Miura T, Umezawa N, Urano Y, Kikuchi, K, Higuchi T, Nagano T (2001) J Am Chem Soc 123:2530–2536

    Article  CAS  Google Scholar 

  40. Song B, Wang G, Yuan J (2005) Chem Commun 3553–3555

  41. Song B, Wang G, Tang M, Yuan J (2005) New J Chem 29:1431–1438

    Article  CAS  Google Scholar 

  42. Nakano M (1990) Methods Enzymol 186:585–591

    Article  CAS  Google Scholar 

  43. Takahama U (1993) Photochem Photobiol 57:376–379

    CAS  Google Scholar 

  44. Nakano M, Sugioka K, Ushijima Y, Goto T (1986) Anal Biochem 159:363–369

    Article  CAS  Google Scholar 

  45. Thompson A, Lever JR, Canella KA, Miura K, Posner GH, Seliger HH (1986) J Am Chem Soc 108:4498–4504

    Article  CAS  Google Scholar 

  46. Zhang G, Li X, Ma H, Zhang D, Li J, Zhu D (2004) Chem Commun 2072–2073

  47. Li X, Zhang G, Ma H, Zhang D, Li J, Zhu D (2004) J Am Chem Soc 126:11543–11548

    Article  CAS  Google Scholar 

  48. Maeda H, Fukuyasu Y, Yoshida S, Fukuda M, Saeki K, Matsuno H, Yamauchi Y, Yoshida K, Hirata K, Miyamoto K (2004) Angew Chem Int Ed 43:2389–2391

    Article  CAS  Google Scholar 

  49. Maeda H, Matsu-ura S, Nishida M, Senba T, Yamauchi Y, Ohmori H (2001) Chem Pharm Bull 49:294–298

    Article  CAS  Google Scholar 

  50. Maeda H, Matsu-ura S, Nishida M, Yamauchi Y, Ohmori H (2002) Chem Pharm Bull 50:169–174

    Article  CAS  Google Scholar 

  51. Lo L-C, Chu C-Y (2003) Chem Commun 2728–2729

  52. Chang MCY, Pralle A, Isacoff EY, Chang CJ (2004) J Am Chem Soc 126:15392–15393

    Article  CAS  Google Scholar 

  53. Miller EW, Albers AE, Pralle A, Isacoff EY, Chang CJ (2005) 127:16652–16659

  54. Wolfbeis OS, Dürkop A, Wu M, Lin Z (2002) Angew Chem Int Ed 41:4495–4498

    Article  CAS  Google Scholar 

  55. Perschke H, Broda E (1961) Nature 190:257–258

    Article  CAS  Google Scholar 

  56. Wu M, Lin Z, Dürkop A, Wolfbeis OS (2004) Anal Bioanal Chem 380:619–626

    Article  CAS  Google Scholar 

  57. Wolfbeis OS, Schäferling M, Dürkop A (2003) Microchim Acta 143:221–227

    Article  CAS  Google Scholar 

  58. Schäferling M, Wu M, Wolfbeis OS (2004) J Fluoresc 14:561–568

    Article  Google Scholar 

  59. Wu M, Lin Z, Schäferling M, Dürkop A, Wolfbeis OS (2005) Anal Biochem 340:66–73

    Article  CAS  Google Scholar 

  60. Soh N, Sakawaki O, Makihara K, Odo Y, Fukaminato T, Kawai T, Irie M, Imato T (2005) Bioorg Med Chem 13:1131–1139

    Article  CAS  Google Scholar 

  61. Akasaka K, Suzuki T, Ohrui H, Meguro H (1987) Anal Lett 20:731–745, 797–807

    CAS  Google Scholar 

  62. Akasaka K, Ohrui H, Meguro H (1993) J Chromatogr 628:31–35

    Article  CAS  Google Scholar 

  63. Fang X, Mark G, von Sonntag C (1996) Ultrasonics Sonochem 3:57–63

    Article  CAS  Google Scholar 

  64. Yan EB, Unthank JK, Castillo-Melendez M, Miller SL, Langford SJ, Walker DW (2005) J Appl Physiol 98:2304–2310

    Article  CAS  Google Scholar 

  65. Qu X, Kirschenbaum LJ, Borish ET (2000) Photochem Photobiol 71:307–313

    Article  CAS  Google Scholar 

  66. Makrigiorgos GM, Baranowska-Korttlewicz J, Bump E, Sahu SK, Berman RM, Kassis AI (1993) Int J Radiat Biol 63:445–458

    Article  CAS  Google Scholar 

  67. Makrigiorgos GM, Folkard M, Huang C, Bump E, Baranowska-Kortylewicz, Sahu SK, Michael BD, Kassis AI (1994) Radiat Res 138:177–185

    Article  CAS  Google Scholar 

  68. Makrigiorgos GM, Bump E, Huang C, Baranowska-Kortylewicz J, Kassis AI (1995) Free Radical Biol Med 18:669–678

    Article  CAS  Google Scholar 

  69. Blough NV, Simpson DJ (1988) J Am Chem Soc 110:1915–1917

    Article  CAS  Google Scholar 

  70. Green SA, Simpson DJ, Zhou G, Ho PS, Blough NV (1990) J Am Chem Soc 112:7337–7346

    Article  CAS  Google Scholar 

  71. Kieber DJ, Blough NV (1990) Anal Chem 62:2275–2283

    Article  CAS  Google Scholar 

  72. Kieber DJ, Blough NV (1990) Free Radical Res Commun 10:109–117

    CAS  Google Scholar 

  73. Gerlock JL, Zacmanidis PJ, Bauer DR, Simpson DJ, Blough NV, Salmeen IT (1990) Free Radical Res Commun 10:119–121

    CAS  Google Scholar 

  74. Pou S, Huang Y-I, Bhan A, Bhadti VS, Hosmane RS, Wu SY, Cao G-L, Rosen GM (1993) Anal Biochem 212:85–90

    Article  CAS  Google Scholar 

  75. Pou S, Bhan A, Bhadti VS, Wu SY, Hosmane RS, Rosen GM (1995) FASEB J 9:1085–1090

    CAS  Google Scholar 

  76. Li B, Blough NV, Gutierrez PL (2000) Free Radical Biol Med 29:548–556

    Article  CAS  Google Scholar 

  77. Borisenko GG, Martin I, Zhao Q, Amoscato AA, Tyurina YY, Kagan VE (2004) J Biol Chem 279:23453–23462

    Article  CAS  Google Scholar 

  78. Yang X-F, Guo X-Q (2001) Anal Chim Acta 434:169–177

    Article  CAS  Google Scholar 

  79. Yang X-F, Guo X-Q (2001) Analyst 126:1800–1804

    Article  CAS  Google Scholar 

  80. Setsukinai K-I, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) J Biol Chem 278:3170–3175

    Article  CAS  Google Scholar 

  81. Setsukinai K-I, Urano Y, Kikuchi K, Higuchi T, Nagano T (2000) J Chem Soc Perkin Trans 2:2453–2457

    Google Scholar 

  82. Soh N, Makihara K, Sakoda E, Imato T (2004) Chem Commun 496–497

  83. Al-Mehdi AB, Shuman H, Fisher AB (1997) Am J Physiol 272:L294–L300

    CAS  Google Scholar 

  84. Benov L, Sztejnberg L, Fridovich I (1998) Free Radical Biol Med 25:826–831

    Article  CAS  Google Scholar 

  85. Maeda H, Yamamoto K, Nomura Y, Kohno I, Hafsi L, Ueda N, Yoshida S, Fukuda M, Fukuyasu Y, Yamauchi Y, Itoh N (2005) J Am Chem Soc 127:68–69

    Article  CAS  Google Scholar 

  86. Maeda H, Matsuno H, Ushida M, Katayama K, Saeki K, Itoh N (2005) Angew Chem Int Ed 44:2922–2925

    Article  CAS  Google Scholar 

  87. Tang B, Zhang L, Zhang L-L (2004) Anal Biochem 326:176–182

    Article  CAS  Google Scholar 

  88. Zhang L, Tang B, Ding Y (2005) J Agric Food Chem 53:549–553

    Article  CAS  Google Scholar 

  89. Medvedeva N, Martin VV, Weis AL, Likhtenshten GI (2004) J Photochem Photobiol A 163:45–51

    Article  CAS  Google Scholar 

  90. Olojo RO, Xia RH, Abramson JJ (2005) Anal Biochem 339:338–344

    Article  CAS  Google Scholar 

  91. Tang B, Zhang L, Hu J-X, Li P, Zhang H, Zhao Y-X (2004) Anal Chim Acta 502:125–131

    Article  CAS  Google Scholar 

  92. Soh N, Ariyoshi T, Fukaminato T, Nakano K, Irie M, Imato T (2005) Bioorg Med Chem Lett (in press)

Download references

Acknowledgements

I wish to thank Prof. Toshihiko Imato, Prof. Masahiro Irie, Prof. Yoshiki Katayama, Prof. Masaharu Murata, Dr. Tuyoshi Fukaminato, Yuka Odo (Kyushu University, Japan), and Prof. Tsuyoshi Kawai (NAIST, Japan) for their valuable comments and discussion about our research introduced in this review. I also wish to thank my co-workers for their contribution, dedication, and enthusiasm, especially Osamu Sakawaki, Emino Sakoda, Koji Makihara, and Tomoyuki Ariyoshi who participated in the research introduced in the review. Original work in the author’s group was supported by Industrial Technology Research Grant Program in 2005 (grant number; 05A01507a to N.S.) from New Energy and Industrial Technology Development Organization (NEDO) of Japan and by Iketani Science and Technology Foundation (grant number; 0171030-A to N.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuaki Soh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soh, N. Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal Bioanal Chem 386, 532–543 (2006). https://doi.org/10.1007/s00216-006-0366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0366-9

Keywords

Navigation