Skip to main content
Log in

Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrostatic interactions between negatively charged polymer surfaces and factor XII (FXII), a blood coagulation factor, were investigated by sum frequency generation (SFG) vibrational spectroscopy, supplemented by several analytical techniques including attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), quartz crystal microbalance (QCM), ζ-potential measurement, and chromogenic assay. A series of sulfonated polystyrenes (sPS) with different sulfonation levels were synthesized as model surfaces with different surface charge densities. SFG spectra collected from FXII adsorbed onto PS and sPS surfaces with different surface charge densities showed remarkable differences in spectral features and especially in spectral intensity. Chromogenic assay experiments showed that highly charged sPS surfaces induced FXII autoactivation. ATR-FTIR and QCM results indicated that adsorption amounts on the PS and sPS surfaces were similar even though the surface charge densities were different. No significant conformational change was observed from FXII adsorbed onto surfaces studied. Using theoretical calculations, the possible contribution from the third-order nonlinear optical effect induced by the surface electric field was evaluated, and it was found to be unable to yield the SFG signal enhancement observed. Therefore it was concluded that the adsorbed FXII orientation and ordering were the main reasons for the remarkable SFG amide I signal increase on sPS surfaces. These investigations indicate that negatively charged surfaces facilitate or induce FXII autoactivation on the molecular level by imposing specific orientation and ordering on the adsorbed protein molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Scharnagl C, Reif M, Friedrich J (2005) Biochim Biophys Acta 1749:187–213

    CAS  Google Scholar 

  2. Tran HT, Pappu RV (2006) Biophys J 91:1868–1886

    Article  CAS  Google Scholar 

  3. Norde W (1995) Cells Mater 5:97–112

    CAS  Google Scholar 

  4. Horbett TA, Brash JL (eds) (1995) Proteins at interfaces II, fundamentals and applications (ACS Symp Ser 602). American Chemical Society, Washington, DC

    Google Scholar 

  5. Malmsten M (1998) J Colloid Interf Sci 207:186–199

    Article  CAS  Google Scholar 

  6. Cormack AN, Lewis RJ, Goldstein AH (2004) J Phys Chem B 108:20408–20418

    Article  CAS  Google Scholar 

  7. Griffin JH (1978) Proc Natl Acad Sci USA 75:1998–2002

    Article  CAS  Google Scholar 

  8. Silverberg M, Dunn J, Garen L, Kaplan A (1980) J Biol Chem 255:7281–7286

    CAS  Google Scholar 

  9. Fuhrer G, Gallimore MJ, Heller W, Hoffmeister HE (1990) Blut 61:258–266

    Article  CAS  Google Scholar 

  10. Pixley RA, Colman RW (1993) In: Lorand L, Mann KG (eds) Proteolytic enzymes in coagulation, fibrinolysis, and complement activation, Pt A. Academic, San Diego, CA, 222:51–65

  11. Schmaier AH (1997) Thromb Haemost 78:101–107

    CAS  Google Scholar 

  12. Yarovaya GA, Blokhina TB, Neshkova EA (2002) Biochem—Mosc 67:13–24

    CAS  Google Scholar 

  13. Schmaier AH (2004) Thromb Haemost 91:1–3

    CAS  Google Scholar 

  14. Colman RW (2006) J Exp Med 203:493–495

    Article  CAS  Google Scholar 

  15. Matata BM, Courtney JM, Sundaram S, Wark S, Bowry SK, Vienken J, Lowe GDO (1996) J Biomed Mater Res 31:63–70

    Article  CAS  Google Scholar 

  16. Wendel HP, Jones DW, Gallimore MJ (1999) Immunopharmacology 45:141–144

    Article  CAS  Google Scholar 

  17. Samuel M, Pixley RA, Villanueva MA, Colman RW, Villanueva GB (1992) J Biol Chem 267:19691–19697

    CAS  Google Scholar 

  18. Tazi S, Tans G, Hemker HC, Nigretto J (1992) Thromb Res 67:665–676

    Article  CAS  Google Scholar 

  19. Samuel M, Samuel E, Villanueva GB (1994) Thromb Res 75:259–268

    Article  CAS  Google Scholar 

  20. Tans G, Griffin J (1982) Blood 59:69–75

    CAS  Google Scholar 

  21. Griep MA, Fujikawa K, Nelsestuen GL (1986) Biochemistry 25:6688–6694

    Article  CAS  Google Scholar 

  22. Griep MA, Fujikawa K, Nelsestuen GL (1985) Biochemistry 24:4124–4130

    Article  CAS  Google Scholar 

  23. Shen YR (1984) The principles of nonlinear optics. Wiley, New York

    Google Scholar 

  24. Ye S, Noda H, Nishida T, Morita S, Osawa M (2004) Langmuir 20:357–365

    Article  CAS  Google Scholar 

  25. Lambert AG, Davies PB, Neivandt DJ (2005) Appl Spectrosc Rev 40:103–145

    CAS  Google Scholar 

  26. Sung J, Jeon Y, Kim D, Iwahashi T, Iimori T, Seki K, Ouchi Y (2005) Chem Phys Lett 406:495–500

    Article  CAS  Google Scholar 

  27. Romero C, Baldelli S (2006) J Phys Chem B 110:6213–6223

    Article  CAS  Google Scholar 

  28. Chen Z, Shen YR, Somorjai GA (2002) Annu Rev Phys Chem 53:437–465

    Article  CAS  Google Scholar 

  29. Harp GP, Rangwalla H, Yeganeh MS, Dhinojwala A (2003) J Am Chem Soc 125:11283–11290

    Article  CAS  Google Scholar 

  30. Miyamae T, Nozoye H (2003) Surf Sci 532–535:1045–1050

    Article  CAS  Google Scholar 

  31. Ohe C, Ida Y, Matsumoto S, Sasaki T, Goto Y, Noi A, Tsurumaru T, Itoh K (2004) J Phys Chem B 108:18081–18087

    Article  CAS  Google Scholar 

  32. Mermut O, Phillips DC, York RL, McCrea KR, Ward RS, Somorjai GA (2006) J Am Chem Soc 128:3598–3607

    Article  CAS  Google Scholar 

  33. Kim J, Somorjai GA (2003) J Am Chem Soc 125:3150–3158

    Article  CAS  Google Scholar 

  34. Ishibashi T, Uetsuka H, Onishi H (2004) J Phys Chem B 108:17166–17170

    Article  CAS  Google Scholar 

  35. Jung SY, Lim SM, Albertorio F, Kim G, Gurau MC, Yang RD, Holden MA, Cremer PS (2003) J Am Chem Soc 125:12782–12786

    Article  CAS  Google Scholar 

  36. Hopkins AJ, McFearin CL, Richmond GL (2006) Curr Opin Solid State Mater Sci 9:19–27

    Article  CAS  Google Scholar 

  37. Wang J, Chen X, Clarke ML, Chen Z (2005) Proc Natl Acad Sci USA 102:4978–4983

    Article  CAS  Google Scholar 

  38. Wang J, Even MA, Chen X, Schmaier AH, Waite JH, Chen Z (2003) J Am Chem Soc 125:9914–9915

    Article  CAS  Google Scholar 

  39. Clarke ML, Wang J, Chen Z (2005) J Phys Chem B 109:22027–22035

    Article  CAS  Google Scholar 

  40. Chen X, Clarke ML, Wang J, Chen Z (2005) Int J Mod Phys B 19:691–713

    Article  CAS  Google Scholar 

  41. Chen X, Wang J, Sniadecki JJ, Even MA, Chen Z (2005) Langmuir 21:2662–2664

    Article  CAS  Google Scholar 

  42. Chen X, Chen Z (2006) Biochim Biophys Acta 1758:1257–1273

    Article  CAS  Google Scholar 

  43. Carvalho AJF, Curvelo AAS (2003) Macromolecules 36:5304–5310

    Article  CAS  Google Scholar 

  44. Martins CR, Ruggeri G, De Paoli M (2003) J Braz Chem Soc 14:797–802

    Article  CAS  Google Scholar 

  45. Wang J, Chen CY, Buck SM, Chen Z (2001) J Phys Chem B 105:12118–12125

    Article  CAS  Google Scholar 

  46. Fairbrother IF, Mastin H (1924) J Chem Soc Trans 125:2319–2330

    Article  CAS  Google Scholar 

  47. Fairbrother F, Mastin H (1925) J Chem Soc Trans 127:32–37

    Article  CAS  Google Scholar 

  48. Schweiss R, Welzel PB, Werner C, Knoll W (2001) Langmuir 17:4304–4311

    Article  CAS  Google Scholar 

  49. Hidalgo-Alvarez R, Martin A, Fernandez A, Bastos D, Martinez F, de las Nieves FJ (1996) Adv Colloid Interf Sci 67:1–118

    Article  CAS  Google Scholar 

  50. Barth A, Zscherp C (2002) Q Rev Biophys 35:369–430

    Article  CAS  Google Scholar 

  51. Tamm LK, Tatulian SA (1997) Q Rev Biophys 30:365–429

    Article  CAS  Google Scholar 

  52. Goormaghtigh E, Raussens V, Ruysschaert J (1999) Biochim Biophys Acta 1422:105–185

    CAS  Google Scholar 

  53. Rosenheck K (1998) Biophys J 75:1237–1243

    Article  CAS  Google Scholar 

  54. Olivotto M, Arcangeli A, Carla M, Wanke E (1996) BioEssays 18:495–504

    Article  CAS  Google Scholar 

  55. Donepudi M, Grutter MG (2002) Biophys Chem 101–102:145–153

    Article  Google Scholar 

  56. Shai Y (2002) Biopolymers 66:236–248

    Article  CAS  Google Scholar 

  57. Citarella F, te Velthuis H, Helmer-Citterich M, Hack CE (2000) Thromb Haemost 84:1057–1065

    CAS  Google Scholar 

  58. Tans G, Rosing J, Griffin JH (1983) J Biol Chem 258:8215–8222

    CAS  Google Scholar 

  59. Suydam IT, Boxer SG (2003) Biochemistry 42:12050–12055

    Article  CAS  Google Scholar 

  60. Tankersley DL, Finlayson JS (1984) Biochemistry 23:273–279

    Article  CAS  Google Scholar 

  61. Corretge E, Nigretto JM (1990) Thromb Res 59:463–473

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by the Beckman Foundation. Z. Chen wants to acknowledge the financial support from Dow Corning Corporation through the Dow Corning Assistant/Associate Professorship. Z. Paszti wants to thank to the Hungarian Scientific Research Fund (F43533) for financial support. Cornelius Kristalyn’s help during manuscript preparation is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Chen.

Electronic supplementary material

Below is the link to the electronic supplentary material.

ESM 1

(DOC 145 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Wang, J., Paszti, Z. et al. Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy. Anal Bioanal Chem 388, 65–72 (2007). https://doi.org/10.1007/s00216-006-0999-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0999-8

Keywords

Navigation