Skip to main content
Log in

Recent advances in surface plasmon resonance based techniques for bioanalysis

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface plasmon resonance (SPR) is a powerful and versatile spectroscopic method for biomolecular interaction analysis (BIA) and has been well reviewed in previous years. This updated 2006 review of SPR, SPR spectroscopy, and SPR imaging explores cutting-edge technology with a focus on material, method, and instrument development. A number of recent SPR developments and interesting applications for bioanalysis are provided. Three focus topics are discussed in more detail to exemplify recent progress. They include surface plasmon fluorescence spectroscopy, nanoscale glassification of SPR substrates, and enzymatic amplification in SPR imaging. Through these examples it is clear to us that the development of SPR-based methods continues to grow, while the applications continue to diversify. Major trends appear to be present in the development of combined techniques, use of new materials, and development of new methodologies. Together, these works constitute a major thrust that could eventually make SPR a common tool for surface interaction analysis and biosensing. The future outlook for SPR and SPR-associated BIA studies, in our opinion, is very bright.

Surface plasmon resonance (SPR) is a powerful and versatile spectroscopic method for biomolecular interaction analysis (BIA) and has been well reviewed in previous years. This updated 2006 review of SPR, SPR spectroscopy, and SPR imaging explores cutting-edge technology with a focus on material, method, and instrument development. A number of recent SPR developments and interesting applications for bioanalysis are provided. Three focus topics are discussed in more detail to exemplify recent progress. They include surface plasmon fluorescence spectroscopy, nanoscale glassification of SPR substrates, and enzymatic amplification in SPR imaging. Through these examples it is clear to us that the development of SPR-based methods continues to grow, while the applications continue to diversify. Major trends appear to be present in the development of combined techniques, use of new materials, and development of new methodologies. Together, these works constitute a major thrust that could eventually make SPR a common tool for surface interaction analysis and biosensing. The future outlook for SPR and SPR-associated BIA studies, in our opinion, is very bright.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Otto A (1968) Phys Status Solidi 26:K99

    CAS  Google Scholar 

  2. Kretschmann E, Reather H (1968) Z Naturforsch 23A:2135

    Google Scholar 

  3. Besenicar M, Macek P, Lakey JH, Anderluh G (2006) Chem Phys Lipids 141:169

    Article  CAS  Google Scholar 

  4. Calander N (2006) Curr Anal Chem 2:203

    Article  CAS  Google Scholar 

  5. Nedelkov D, Nelson RW (2006) Methods Mol Biol 328:131

    CAS  Google Scholar 

  6. Ince R, Narayanaswamy R (2006) Anal Chim Acta 569:1

    Article  CAS  Google Scholar 

  7. Katsamba PS, Navratilova I, Calderon-Cacia M, Fan L, Thornton K, Zhu M, Vanden Bos T, Forte C, Friend D, Laird-Offringa I, Tavares G, Whatley J, Shi E, Widom A, Lindquist KC, Klakamp S, Drake A, Bohmann D, Roell M, Rose L, Dorocke J, Roth B, Luginbuehl, B, Myszka DG (2006) Anal Biochem 352:208

    Article  CAS  Google Scholar 

  8. Zhang X, Yonzon CR, Van Duyne RP (2006) J Mater Res 21:1083

    Article  CAS  Google Scholar 

  9. Rich RL, Myszka DG (2004) Drug Discovery Today Technol 1:301

    Article  CAS  Google Scholar 

  10. Steiner G (2004) Anal Bioanal Chem 379:328

    Article  CAS  Google Scholar 

  11. Cooper MA (2003) Anal Bioanal Chem 327:834

    Article  CAS  Google Scholar 

  12. Homola J (2003) Anal Bioanal Chem 377:528

    Article  CAS  Google Scholar 

  13. Homola J, Myszka D, Sinclair S (2002) Op. Biosens 207:251

    Google Scholar 

  14. McDonnell JM (2001) Curr Opin Chem Biol 5:572

    Article  CAS  Google Scholar 

  15. Rich RL, Myszka DG (2000) Curr Opin Biotechnol 11:54

    Article  CAS  Google Scholar 

  16. Karlsson R (2004) J Mol Recognit 17:151

    Article  CAS  Google Scholar 

  17. Pawelek PD, Croteau N, Ng-Thow-Hing C, Khursigara CM, Moiseeva N, Allaire M, Coulton JW (2006) Science 312:1399

    Article  CAS  Google Scholar 

  18. Jeuken LJC, Connell SD, Henderson PJF, Gennis RB, Evans SD, Bushby RJ (2006) J Am Chem Soc 128:1711

    Article  CAS  Google Scholar 

  19. Alves ID, Delaroche D, Mouillac B, Salamon Z, Tollin G, Hruby VJ, Lavielle S, Sagan S (2006) Biochemistry 45:5309

    Article  CAS  Google Scholar 

  20. Stenlund P, Frostell-Karlsson A, Karlsson OP (2006) Anal Biochem 353:217

    Article  CAS  Google Scholar 

  21. Pol E, Wang L (2006) Biochemistry 45:513

    Article  CAS  Google Scholar 

  22. Moza B, Buonpane RA, Zhu P, Herfst CA, Nur-ur RAKM, McCormick JK, Kranz DM, Sundberg EJ (2006) Proc Natl Acad Sci USA 103:9867

    Article  CAS  Google Scholar 

  23. Kawatake S, Nishimura Y, Sakaguchi S, Iwaki T, Doh-ura K (2006) Biol Pharm Bull 29:927

    Article  CAS  Google Scholar 

  24. Paloniemi H, Lukkarinen M, Aeaeritalo T, Areva S, Leiro J, Heinonen M, Haapakka K, Lukkari J (2006) Langmuir 22:74

    Article  CAS  Google Scholar 

  25. Lin C, Chen K, Su M, Hsiao T, Lee S, Lin,S, Shi X, Lee C (2006) Sens Actuators B 117:219

    Article  CAS  Google Scholar 

  26. Yao X, Li X, Toledo F, Zurita-Lopez C, Gutova M, Momand J, Zhou F (2006) Anal Biochem 354:220

    Article  CAS  Google Scholar 

  27. Casa E, Kurosawa C, Kurosawa S, Aizawa H, Park J, Suzuki H (2006) Electrochemistry 74:153

    CAS  Google Scholar 

  28. Le Berre M, Kane M (2006) Anal Lett 39:1587

    Article  CAS  Google Scholar 

  29. Balamurugan S, Obubuafo A, Soper SA, McCarley RL, Spivak DA (2006) Langmuir 22:6446

    Article  CAS  Google Scholar 

  30. Willard FS, Siderovski DP (2006) Anal Biochem 353:147

    Article  CAS  Google Scholar 

  31. Kurita R, Hirata Y, Yabuki S, Kato D, Sato Y, Mizutani F, Niwa O (2006) Electrochemistry 74:121

    CAS  Google Scholar 

  32. Klenkar G, Valiokas R, Lundstroem I, Tinazli A, Tampe R, Piehler J, Liedberg B (2006) Anal Chem 78:3643

    Article  CAS  Google Scholar 

  33. Larsericsdotter H, Jansson O, Zhukov A, Areskoug D, Oscarsson S, Buijs J (2006) Proteomics 6:2355

    Article  CAS  Google Scholar 

  34. Borch J, Roepstorff P (2006) Mol Biotechnol 33:179

    Article  CAS  Google Scholar 

  35. Baba A, Taranekar P, Pannapati RR, Patton D, Knoll W, Advincula RC (2006) PMSE Prepr 94:586

    CAS  Google Scholar 

  36. Yang X, Wang Q, Wang K, Tan W, Yao J, Li H (2006) Langmuir 22:5654

    Article  CAS  Google Scholar 

  37. Francis LA, Friedt J, Zhou C, Bertrand P (2006) Anal Chem 78:4200

    Article  CAS  Google Scholar 

  38. Xiang J, Guo J, Zhou F (2006) Anal Chem 78:1418

    Article  CAS  Google Scholar 

  39. Ziblat R, Lirtsman V, Davidov D, Aroeti B (2006) Biophys J 90:2592

    Article  CAS  Google Scholar 

  40. Sheridan AK, Ngamukot P, Bartlett PN, Wilkinson JS (2006) Sens Actuators B 117:253

    Article  CAS  Google Scholar 

  41. Slavik R, Homola J, Vaisocherova H (2006) Meas Sci Technol 17:932

    Article  CAS  Google Scholar 

  42. Singh B, Hillier AC (2006) Anal Chem 78:2009

    Article  CAS  Google Scholar 

  43. Gentleman DJ, Booksh KS (2006) Talanta 68:504

    Article  CAS  Google Scholar 

  44. Battaglia TM, Masson J, Sierks MR, Beaudoin SP, Rogers J, Foster KN (2005) Anal Chem 77:7016

    Article  CAS  Google Scholar 

  45. Attridge JW, Daniels PB, Deacon JK, Robinson GA, Davidson GP (1991) Biosens Bioelectron 6:201

    Article  CAS  Google Scholar 

  46. Schmidt EK, Liebermann T, Kreiter M, Jonczyk A, Naumann R, Offenhausser A, Neumann E, Kukol A, Maelicke A, Knoll W (1998) Biosens Bioelectron 13:585

    Article  CAS  Google Scholar 

  47. Neumann T, Johansson M, Kambhampati D, Knoll W (2002) Adv Funct Mater 12:575

    Article  CAS  Google Scholar 

  48. Stengel G, Knoll W (2005) Nucl Acid Res 33:e69

    Article  Google Scholar 

  49. Ekgasit S, Yu F, Knoll W (2005) Sens Actuators B 104:294

    Article  CAS  Google Scholar 

  50. Vareiro MMLM, Liu J, Knoll W, Zak K, Williams D, Jenkins ATA (2005) Anal Chem 77:2426

    Article  CAS  Google Scholar 

  51. Zhang Z, Knoll W, Foerch R, Holcomb R, Roltman D (2005) Macromolecules 38:1271

    Article  CAS  Google Scholar 

  52. Liu J, Tiefenauer L, Tian S, Nielsen PE, Knoll W (2006) Anal Chem 78:470

    Article  CAS  Google Scholar 

  53. Lossner D, Kessler H, Thumshirn G, Dahmen C, Wittschi B, Tanaka M, Knoll W, Sinner E, Reuning U (2006) Anal Chem 78:4524

    Article  CAS  Google Scholar 

  54. Xu F, Persson B, Lofas S, Knoll W (2006) Langmuir 22:3352

    Article  CAS  Google Scholar 

  55. Williams TL, Vareiro MMLM, Jenkins ATA (2006) Langmuir 22:6473

    Article  CAS  Google Scholar 

  56. Phillips KS, Han J, Martinez M, Wang Z, Carter D, Cheng Q (2006) Anal Chem 78:596

    Article  CAS  Google Scholar 

  57. He J, Fujikawa S, Kunitake T (2003) Chem Mater 15:3308

    Article  CAS  Google Scholar 

  58. Phillips KS, Wilkop T, Wu J, Al-Kaysi RO, Cheng Q (2006) J Am Chem Soc 128:9590

    Article  CAS  Google Scholar 

  59. Kambhampati DK, Jakob TAM, Robertson JW, Cai M, Pemberton JE, Knoll W (2001) Langmuir 17:1169

    Article  CAS  Google Scholar 

  60. Tawa K, Morigaki K (2005) Biophys J 89:2750

    Article  CAS  Google Scholar 

  61. Szunerits S, Boukherroub R (2006) Langmuir 22:1660

    Article  CAS  Google Scholar 

  62. Szunerits S, Boukherroub R (2006) Electrochem Commun 8:439

    Article  CAS  Google Scholar 

  63. Reimhult E, Zach M, Hook F, Kasemo B (2006) Langmuir 22:3313

    Article  CAS  Google Scholar 

  64. Phillips KS, Cheng Q (2005) Anal Chem 77:327

    Article  CAS  Google Scholar 

  65. Phillips KS, Dong Y, Carter D, Cheng Q (2005) Anal Chem 77:2960

    Article  CAS  Google Scholar 

  66. Dong Y, Phillips KS, Cheng Q (2006) Lab Chip 5:675

    Article  CAS  Google Scholar 

  67. Goodrich TT, Lee HJ, Corn RM (2004) J Am Chem Soc 126:4096

    Article  CAS  Google Scholar 

  68. Goodrich TT, Lee HJ, Corn RM (2004) Anal Chem 76:6173

    Article  CAS  Google Scholar 

  69. Lee HJ, Wark AW, Corn RM (2006) Langmuir 22:5241

    Article  CAS  Google Scholar 

  70. Lee HJ, Li Y, Wark AW, Corn RM (2005) Anal Chem 77:5096

    Article  CAS  Google Scholar 

  71. Fang S, Lee HJ, Wark AW, Kim HM, Corn RM (2005) Anal Chem 77:6528

    Article  CAS  Google Scholar 

  72. Lee HJ, Wark AW, Li Y, Corn RM (2005) Anal Chem 77:7832

    Article  CAS  Google Scholar 

  73. Li Y, Wark AW, Lee HJ, Corn RM (2006) Anal Chem 78:3158

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the National Science Foundation (BES-0428908) for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, K.S., Cheng, Q. Recent advances in surface plasmon resonance based techniques for bioanalysis. Anal Bioanal Chem 387, 1831–1840 (2007). https://doi.org/10.1007/s00216-006-1052-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-1052-7

Keywords

Navigation