Skip to main content
Log in

Evaluation of extraction methods for quantification of aqueous fullerenes in urine

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

There is a growing concern about the human and environmental health effects of fullerenes (e.g., C60) due to their increasing application in research, medicine, and industry. Toxicological and pharmacokinetic research requires standard methods for extraction and detection of fullerenes from biological matrices such as urine. The present study validates the use of liquid-liquid extraction (LLE) and solid-phase extraction (SPE) methods in conjunction with liquid chromatography–mass spectrometry (LC–MS) for the quantitative determination of C60 in human and synthetic urine as compared with ultrapure water. Glacial acetic acid, which is necessary to prevent emulsions during LLE, inhibited C60 detection by LC–MS, but this could be mitigated with evaporation. Aqueous C60 aggregates (nC60) were spiked at 180 μg/L into the components of a synthetic urine recipe to determine their individual impacts on extraction and detection. Urea, creatinine, and a complex protein (i.e., gelatin) were found to impair SPE, leading to a low recovery rate of 43 ± 4% for C60 spiked into human urine. In contrast, C60 was consistently recovered from synthetic matrices using LLE, and recovery in human urine was 80 ± 6%. These results suggest that LLE combined with LC–MS is suitable for studying the clearance of fullerenes from the body. LLE is a robust technique that holds promise for extracting C60 from other complex biological matrices (e.g., blood, sweat, amniotic fluid) in toxicological studies, enabling a better understanding of the behavior of fullerenes in human and animal systems and facilitating a more comprehensive risk evaluation of fullerenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomedicine 2(4):639–649

    CAS  Google Scholar 

  2. Jensen AW, Wilson SR, Schuster DI (1996) Biological applications of fullerenes. Bioorg Med Chem Lett 4(6):767–779

    Article  CAS  Google Scholar 

  3. Markovic Z, Trajkovic V (2008) Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 29(26):3561–3573

    Article  CAS  Google Scholar 

  4. Prato M (1997) [60] Fullerene chemistry for materials science applications. J Mater Chem 7(7):1097–1109

    Article  CAS  Google Scholar 

  5. Ebbesen TW, Hiura H, Hedenquist JW, de Ronde CEJ, Andersen A, Often M, Melezhik VA (1995) Origins of fullerenes in rock. Science 268:1634–1635

    Article  CAS  Google Scholar 

  6. Ishiguro T, Takatori Y, Akihama K (1997) Microstructure of diesel soot particles probed by electron microscopy: first observation of inner core and outer shell. Combust Flame 108(1–2):231–234

    Article  Google Scholar 

  7. Lee TH, Yao N, Chen TJ, Hsu WK (2002) Fullerene-like carbon particles in petrol soot. Carbon 40(12):2275–2279

    Article  CAS  Google Scholar 

  8. Utsunomiya S, Jensen KA, Keeler GJ, Ewing RC (2002) Uraninite and fullerene in atmospheric particles. Environ Sci Technol 36:4943–4947

    Article  CAS  Google Scholar 

  9. Farre M, Perez S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda A, Barcelo D (2010) First determination of C-60 andC(70) fullerenes and N-methylfulleropyrrolidine C-60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J Hydrol 383(1–2):44–51

    Article  CAS  Google Scholar 

  10. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170

    Article  CAS  Google Scholar 

  11. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222

    Article  CAS  Google Scholar 

  12. Murr LE, Soto KF, Esquivel EV, Bang JJ, Guerrero PA, Lopez DA, Ramirez DA (2004) Carbon nanotubes and other fullerene-related nanocrystals in the environment: a TEM study. JOM 56(6):28–31

    Article  CAS  Google Scholar 

  13. Dhawan A, Taurozzi JS, Pandey AK, Shan W, Miller SM, Hashsham SA, Tarabara VV (2006) Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ Sci Technol 40(23):7394–7401

    Article  CAS  Google Scholar 

  14. Lee J, Fortner JD, Hughes JB, Kim JH (2007) Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation. Environ Sci Technol 41(7):2529–2535

    Article  CAS  Google Scholar 

  15. Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T, Nagano T (2003) Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2. J Am Chem Soc 125(42):12803–12809

    Article  CAS  Google Scholar 

  16. Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39(11):4307–4316

    Article  CAS  Google Scholar 

  17. Lee I, Mackeyev Y, Cho M, Li D, Kim JH, Wilson LJ, Alvarez PJ (2009) Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems. Environ Sci Technol 43(17):6604–6610

    Article  CAS  Google Scholar 

  18. Lyon DY, Adams LK, Falkner JC, Alvarez PJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40(14):4360–4366

    Article  CAS  Google Scholar 

  19. Lyon DY, Alvarez PJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42(21):8127–8132

    Article  CAS  Google Scholar 

  20. Tsao N, Kanakamma PP, Luh TY, Chou CK, Lei HY (1999) Inhibition of Escherichia coli-induced meningitis by carboxyfullerence. Antimicrob Agents Chemother 43(9):2273–2277

    CAS  Google Scholar 

  21. Isaacson CW, Kleber M, Field JA (2009) Quantitative analysis of fullerene nanomaterials in environmental systems: a critical review. Environ Sci Technol 43(17):6463–6474

    Article  CAS  Google Scholar 

  22. Pycke BFG, Benn TM, Westerhoff P, Halden RU (2010) Strategies for quantifying C60 fullerenes in environmental and biological samples and implications for studies in environmental health and ecotoxicology. Trends Anal Chem. doi: 10.1016/j.trac.2010.08.005

  23. Cagle DW, Kennel SJ, Mirzadeh S, Alford JM, Wilson LJ (1999) In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc Natl Acad Sci U S A 96(9):5182–5187

    Article  CAS  Google Scholar 

  24. Georgin D, Czarny B, Botquin M, Mayne-L'hermite M, Pinault M, Bouchet-Fabre B, Carriere M, Poncy JL, Chau Q, Maximilien R, Dive V, Taran F (2009) Preparation of (14)C-labeled multiwalled carbon nanotubes for biodistribution investigations. J Am Chem Soc 131(41):14658–14659

    Article  CAS  Google Scholar 

  25. Nikolic N, Vranjes-Ethuric S, Jankovic D, Ethokic D, Mirkovic M, Bibic N, Trajkovic V (2009) Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals. Nanotechnol 20(38):385102

    Article  Google Scholar 

  26. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A 103(9):3357–3362

    Article  CAS  Google Scholar 

  27. Rajagopalan P, Wudl F, Schinazi RF, Boudinot FD (1996) Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob Agents Chemother 40(10):2262–2265

    CAS  Google Scholar 

  28. Pauluhn J (2010) Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 113(1):226–242

    Article  CAS  Google Scholar 

  29. Jehlicka J, Frank O, Hamplova V, Pokorna Z, Juha L, Bohacek Z, Weishauptova Z (2005) Low extraction recovery of fullerene from carbonaceous geological materials spiked with C-60. Carbon 43(9):1909–1917

    Article  CAS  Google Scholar 

  30. Becker L, Bada JL, Winans RE, Bunch TE (1994) Fullerenes in Allende Meteorite. Nature 372(6506):507–507

    Article  CAS  Google Scholar 

  31. Xia XR, Monteiro-Riviere NA, Riviere JE (2006) Trace analysis of fullerenes in biological samples by simplified liquid-liquid extraction and high-performance liquid chromatography. J Chromatogr A 1129(2):216–222

    Article  CAS  Google Scholar 

  32. Dams R, Huestis MA, Lambert WE, Murphy CM (2003) Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: influence of ionization type, sample preparation, and biofluid. J Am Soc Mass Spectrom 14(11):1290–1294

    Article  CAS  Google Scholar 

  33. Kraemer T, Maurer HH (1998) Determination of amphetamine, methamphetamine and amphetamine-derived designer drugs or medicaments in blood and urine. J Chromatogr B 713(1):163–187

    Article  CAS  Google Scholar 

  34. Pratt DA, Daniloff Y, Duncan A, Robins SP (1992) Automated-analysis of the pyridinium cross-links of collagen in tissue and urine using solid-phase extraction and reversed-phase high-performance liquid chromatography. Anal Biochem 207(1):168–175

    Article  CAS  Google Scholar 

  35. Chen Z, Westerhoff P, Herckes P (2008) Quantification of C60 fullerene concentrations in water. Environ Toxicol Chem 1

  36. Wang C, Shang C, Westerhoff P (2010) Quantification of fullerene aggregate nC60 in wastewater by high-performance liquid chromatography with UV-vis spectroscopic and mass spectrometric detection. Chemosphere 80(3):334–339

    Article  Google Scholar 

  37. Brant J, Lecoanet H, Hotze M, Wiesner M (2005) Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures. Environ Sci Technol 39(17):6343–6351

    Article  CAS  Google Scholar 

  38. Chen KL, Elimelech M (2009) Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ Sci Technol 43(19):7270–7276

    Article  CAS  Google Scholar 

  39. Dugan LL, Turetsky DM, Du C, Lobner D, Wheeler M, Almli CR, Shen CK, Luh TY, Choi DW, Lin TS (1997) Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci U S A 94(17):9434–9439

    Article  CAS  Google Scholar 

  40. Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF (1991) Radical reactions of C60. Science 254(5035):1183–1185

    Article  CAS  Google Scholar 

  41. McEwen CN, Mckay RG, Larsen BS (1992) C-60 as a radical sponge. J Am Chem Soc 114(11):4412–4414

    Article  CAS  Google Scholar 

  42. Xiao L, Takada H, Gan X, Miwa N (2006) The water-soluble fullerene derivative “Radical Sponge” exerts cytoprotective action against UVA irradiation but not visible-light-catalyzed cytotoxicity in human skin keratinocytes. Bioorg Med Chem Lett 16(6):1590–1595

    Article  CAS  Google Scholar 

  43. Lee J, Song W, Jang SS, Fortner JD, Alvarez PJ, Cooper WJ, Kim JH (2010) Stability of water-stable C60 clusters to OH radical oxidation and hydrated electron reduction. Environ Sci Technol 44(10):3786–3792

    Article  CAS  Google Scholar 

  44. Heymann D (2004) Ozonides and oxide C-60 and C-70: a review. Fuller Nanotubes Carbon Nanostruct 12(4):715–729

    Article  CAS  Google Scholar 

  45. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557

    Article  CAS  Google Scholar 

  46. Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Moller P (2009) Oxidatively damaged DNA in rats exposed by oral gavage to C-60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 117(5):703–708

    CAS  Google Scholar 

  47. Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41(7):2636–2642

    Article  CAS  Google Scholar 

  48. Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett 7(3):614–619

    Article  CAS  Google Scholar 

  49. Santa T, Yoshioka D, Homma H, Imai K, Satoh M, Takayanagi I (1995) High-performance liquid-chromatography of fullerence (C-60) in plasma using ultraviolet and mass-spectrometric detection. Biol Pharm Bull 18(9):1171–1174

    CAS  Google Scholar 

  50. Isaacson CW, Usenko CY, Tanguay RL, Field JA (2007) Quantification of fullerenes by LC/ESI-MS and its application to in vivo toxicity assays. Anal Chem 79(23):9091–9097

    Article  CAS  Google Scholar 

  51. Guzman KA, Taylor MR, Banfield JF (2006) Environmental risks of nanotechnology: National Nanotechnology Initiative funding, 2000-2004. Environ Sci Technol 40(5):1401–1407

    Article  Google Scholar 

  52. Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ Sci Technol 43(3):597–603

    Article  CAS  Google Scholar 

  53. Johnson AC, Sumpter JP (2001) Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environ Sci Technol 35(24):4697–4703

    Article  CAS  Google Scholar 

  54. Kuch HM, Ballschmiter K (2001) Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ Sci Technol 35(15):3201–3206

    Article  CAS  Google Scholar 

  55. Isaacson CW, Bouchard D (2010) Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photo-ionization mass spectrometry. J Chromatogr A 1217(9):1506–1512

    Article  CAS  Google Scholar 

  56. Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7(4–5):545–553

    Article  CAS  Google Scholar 

  57. Ma X, Bouchard D (2009) Formation of aqueous suspensions of fullerenes. Environ Sci Technol 43(2):330–336

    Article  CAS  Google Scholar 

  58. Birch ME, Cary RA (1996) Elemental carbon-based method for occupational monitoring of particulate diesel exhaust: methodology and exposure issues. Analyst 121(9):1183–1190

    Article  CAS  Google Scholar 

  59. Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41(1):179–184

    Article  CAS  Google Scholar 

  60. Tsuchiya T, Yamakoshi YN, Miyata N (1995) A novel promoting action of fullerene C60 on the chondrogenesis in rat embryonic limb bud cell culture system. Biochem Biophys Res Commun 206(3):885–894

    Article  CAS  Google Scholar 

  61. Wenzler-Rottele S, Dettenkofer M, Schmidt-Eisenlohr E, Gregersen A, Schulte-Monting J, Tvede M (2006) Comparison in a laboratory model between the performance of a urinary closed system bag with double non-return valve and that of a single valve system. Infection 34(4):214–218

    Article  CAS  Google Scholar 

  62. Gosetti F, Mazzucco E, Zampieri D, Gennaro MC (2010) Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1217(25):3929–3937

    Article  CAS  Google Scholar 

  63. Heymann D, Bachilo SM, Weisman RB (2002) Ozonides, epoxides, and oxidoannulenes of C-70. J Am Chem Soc 124(22):6317–6323

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH Grand Opportunities (RC2) program through NIEHS grant DE-FG02-08ER64613, as well as grant number 1R01ES015445. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Environmental Health Sciences or the National Institutes of Health. The authors are grateful to Andrea Clements and Dr. Matthew Fraser for assistance with the TOT analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy M. Benn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benn, T.M., Pycke, B.F.G., Herckes, P. et al. Evaluation of extraction methods for quantification of aqueous fullerenes in urine. Anal Bioanal Chem 399, 1631–1639 (2011). https://doi.org/10.1007/s00216-010-4465-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4465-2

Keywords

Navigation