Skip to main content

Advertisement

Log in

Distinguishing breast cancer cells using surface-enhanced Raman scattering

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The detection and identification of epidermal growth factor receptor 2 (HER2)-positive breast cancer cells is crucial for the clinic therapy of breast cancer. For the aim of the detection, a novel surface-enhanced Raman scattering (SERS) probe for distinguishing breast cancers at different HER2 statuses is reported in this paper. In such a probe, anti-HER2 antibody-conjugated silver nanoparticles have been synthesized for specific targeting of HER2-positive breast cancer cells. More importantly, different from the previously reported SERS probe for targeting cancer cells, p-mercaptobenzoic acid is utilized as both the Raman reporter and the conjugation agent for attaching antibody molecules, which leads to a much simplified structure. For investigating the ability of such a probe to distinguish breast cancer cells, SKBR3 and MCF7 cells were chosen as two model systems, which are HER2-positive- and HER2-negative-expressing cells, respectively. The experimental results reveal that SKBR3 cells exhibit much stronger SERS signals than MCF7 cells, indicating that the probe could be utilized to distinguish breast cancer cells at different HER2 statuses. This kind of SERS probe holds a potential for a direct detection of living breast cancer cells with the advantages of easy fabrication, high SERS sensitivity, and biocompatibility.

SERS spectra of the probe in SKBR3 cells and in MCF7 cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miyano T, Wijagkanalan W, Kawakami S, Yamashita F, Hashida M (2010) Anionic amino acid dendrimer–trastuzumab conjugates for specific internalization in HER2-positive cancer cells. Mol Pharm 7(4):1318–1327. doi:10.1021/mp100105c

    Article  CAS  Google Scholar 

  2. Hayes DF, Yamauchi H, Stearns V (2001) When is a tumor marker ready for prime time? A case study of c-erbB-2 as a predictive factor in breast cancer. J Clin Oncol 19(8):2334–2356

    Google Scholar 

  3. Xiao Y, Gao XG, Maragh S, Telford WG, Tona A (2009) Cell lines as candidate reference materials for quality control of ERBB2 amplification and expression assays in breast cancer. Clin Chem 55(7):1307–1315. doi:10.1373/clinchem.2008.120576

    Article  CAS  Google Scholar 

  4. Hayes DF, Picard MH (2006) Heart of darkness: the downside of trastuzumab. J Clin Oncol 24(25):4056–4058. doi:10.1200/Jco.2006.07.5143

    Article  CAS  Google Scholar 

  5. Jimenez RE, Wallis T, Tabasczka P, Visscher DW (2000) Determination of Her-2/neu status in breast carcinoma: comparative analysis of immunohistochemistry and fluorescent in situ hybridization. Mod Pathol 13(1):37–45

    Article  CAS  Google Scholar 

  6. Kneipp J, Kneipp H, Kneipp K (2008) SERS—a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37(5):1052–1060. doi:10.1039/B708459p

    Article  CAS  Google Scholar 

  7. Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanana R (2008) SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev 37(5):1001–1011. doi:10.1039/B708461g

    Article  CAS  Google Scholar 

  8. Charan S, Chien FC, Singh N, Kuo CW, Chen PL (2011) Development of lipid targeting raman probes for in vivo imaging of Caenorhabditis elegans. Chem A Eur J 17(18):5164–5169. doi:10.1002/chem.201002896

    Article  Google Scholar 

  9. Doering WE, Nie SM (2002) Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. J Phys Chem B 106(2):311–317. doi:10.1021/Jp011730b

    Article  CAS  Google Scholar 

  10. Kim JH, Kim JS, Choi H, Lee SM, Jun BH, Yu KN, Kuk E, Kim YK, Jeong DH, Cho MH, Lee YS (2006) Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Anal Chem 78(19):6967–6973. doi:10.1021/Ac0607663

    Article  CAS  Google Scholar 

  11. Lee S, Kim S, Choo J, Shin SY, Lee YH, Choi HY, Ha SH, Kang KH, Oh CH (2007) Biological imaging of HEK293 cells expressing PLC gamma 1 using surface-enhanced raman microscopy. Anal Chem 79(3):916–922. doi:10.1021/ac061246a

    Article  CAS  Google Scholar 

  12. Yang J, Wang ZY, Tan XB, Li J, Song CY, Zhang RH, Cui YP (2010) A straightforward route to the synthesis of a surface-enhanced Raman scattering probe for targeting transferrin receptor-overexpressed cells. Nanotechnology 21(34):345101. doi:10.1088/0957-4484/21/34/345101

    Article  Google Scholar 

  13. Qian XM, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie SM (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26(1):83–90. doi:10.1038/nbt.1377

    Article  CAS  Google Scholar 

  14. Jun BH, Noh MS, Kim J, Kim G, Kang H, Kim MS, Seo YT, Baek J, Kim JH, Park J, Kim S, Kim YK, Hyeon T, Cho MH, Jeong DH, Lee YS (2010) Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small 6(1):119–125. doi:10.1002/smll.200901459

    Article  CAS  Google Scholar 

  15. Wang ZY, Zong SF, Yang J, Li J, Cui YP (2011) Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells. Biosens Bioelectron 26(6):2883–2889. doi:10.1016/j.bios.2010.11.032

    Article  CAS  Google Scholar 

  16. Wang X, Qian XM, Beitler JJ, Chen ZG, Khuri FR, Lewis MM, Shin HJC, Nie SM, Shin DM (2011) Detection of circulating tumor cells in human peripheral blood using surface-enhanced raman scattering nanoparticles. Cancer Res 71(5):1526–1532. doi:10.1158/0008-5472.Can-10-3069

    Article  CAS  Google Scholar 

  17. Sha MY, Xu HX, Natan MJ, Cromer R (2008) Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J Am Chem Soc 130(51):17214. doi:10.1021/ja804494m

    Article  CAS  Google Scholar 

  18. Maiti KK, Dinish US, Fu CY, Lee JJ, Soh KS, Yun SW, Bhuvaneswari R, Olivo M, Chang YT (2010) Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection. Biosens Bioelectron 26(2):398–403. doi:10.1016/j.bios.2010.07.123

    Article  CAS  Google Scholar 

  19. Lee S, Chon H, Lee M, Choo J, Shin SY, Lee YH, Rhyu IJ, Son SW, Oh CH (2009) Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres. Biosens Bioelectron 24(7):2260–2263. doi:10.1016/j.bios.2008.10.018

    Article  CAS  Google Scholar 

  20. Park H, Lee S, Chen L, Lee EK, Shin SY, Lee YH, Son SW, Oh CH, Song JM, Kang SH, Choo J (2009) SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Phys Chem Chem Phys 11(34):7444–7449. doi:10.1039/B904592a

    Article  CAS  Google Scholar 

  21. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395

    Article  CAS  Google Scholar 

  22. Song CY, Wang ZY, Zhang RH, Yang J, Tan XB, Cui YP (2009) Highly sensitive immunoassay based on Raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate. Biosens Bioelectron 25(4):826–831. doi:10.1016/j.bios.2009.08.035

    Article  CAS  Google Scholar 

  23. Bishnoi SW, Rozell CJ, Levin CS, Gheith MK, Johnson BR, Johnson DH, Halas NJ (2006) All-optical nanoscale pH meter. Nano Lett 6(8):1687–1692

    Article  CAS  Google Scholar 

  24. Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T (2004) Intracellular pH sensors based on surface-enhanced Raman scattering. Anal Chem 76(23):7064–7068. doi:10.1021/ac049093j

    Article  CAS  Google Scholar 

  25. Tan XB, Wang ZY, Yang J, Song CY, Zhang RH, Cui YP (2009) Polyvinylpyrrolidone–(PVP-) coated silver aggregates for high performance surface-enhanced Raman scattering in living cells. Nanotechnology 20(44):445102. doi:10.1088/0957-4484/20/44/445102

    Article  Google Scholar 

  26. Felidj N, Aubard J, Levi G (1998) New approaches in the characterization of surface-enhanced Raman scattering-active substrates. J Raman Spectrosc 29(8):651–664

    Article  CAS  Google Scholar 

  27. Schwartzberg AM, Grant CD, Wolcott A, Talley CE, Huser TR, Bogomolni R, Zhang JZ (2004) Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate. J Phys Chem B 108(50):19191–19197. doi:10.1021/Jp048430p

    Article  CAS  Google Scholar 

  28. Camargo PHC, Au L, Rycenga M, Li WY, Xia YN (2010) Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes. Chem Phys Lett 484(4–6):304–308. doi:10.1016/j.cplett.2009.12.002

    Article  CAS  Google Scholar 

  29. Michota A, Bukowska J (2003) Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J Raman Spectrosc 34(1):21–25. doi:10.1002/jrs.928

    Article  CAS  Google Scholar 

  30. Mojtahedi Z, Safaei A, Yousefi Z, Ghaderi A (2011) Immunoproteomics of HER2-positive and HER2-negative breast cancer patients with positive lymph nodes. Omics 15(6):409–418. doi:10.1089/omi.2010.0131

    Article  CAS  Google Scholar 

  31. Menendez JA, Vazquez-Martin A, Colomer R, Brunet J, Carrasco-Pancorbo A, Garcia-Villalba R, Fernandez-Gutierrez A, Segura-Carretero A (2007) Olive oil’s bitter principle reverses acquired autoresistance to trastuzumab (Herceptin (TM)) in HER2-overexpressing breast cancer cells. BMC Cancer 7:80. doi:10.1186/1471-2407-7-80

    Article  Google Scholar 

  32. Kirischuk S, Neuhaus J, Verkhratsky A, Kettenmann H (1995) Preferential localization of active mitochondria in-process tips of immature retinal oligodendrocytes. Neuroreport 6(5):737–741

    Article  CAS  Google Scholar 

  33. Barnett DK, Kimura J, Bavister BD (1996) Translocation of active mitochondria during hamster preimplantation embryo development studied by confocal laser scanning microscopy. Dev Dyn 205(1):64–72

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nature Science Foundation of China (NSFC, nos.60708024 and 60877024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Wang, Z., Zong, S. et al. Distinguishing breast cancer cells using surface-enhanced Raman scattering. Anal Bioanal Chem 402, 1093–1100 (2012). https://doi.org/10.1007/s00216-011-5577-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5577-z

Keywords

Navigation