Skip to main content

Advertisement

Log in

Peptide nucleic acid molecular beacons for the detection of PCR amplicons in droplet-based microfluidic devices

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of droplet-based microfluidics and peptide nucleic acid molecular beacons for the detection of polymerase chain reaction (PCR)-amplified DNA sequences within nanoliter-sized droplets is described in this work. The nanomolar–attomolar detection capabilities of the method were preliminarily tested by targeting two different single-stranded DNA sequences from the genetically modified Roundup Ready soybean and the Olea europaea genomes and detecting the fluorescence generated by peptide nucleic acid molecular beacons with fluorescence microscopy. Furthermore, the detection of 10 nM solutions of PCR amplicon of DNA extracted from leaves of O. europaea L. encapsulated in nanoliter-sized droplets was performed to demonstrate that peptide nucleic acid molecular beacons can discriminate O. europaea L. cultivar species carrying different single-nucleotide polymorphisms.

The fluorescence generated by peptide nucleic acid molecular beacons allows the detection of 100-200 attomoles of PCR-amplified DNA sequences from solutions encapsulated in nanoliter-sized droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gibson G (2008) Nat Rev Genet 9:575–581

    Article  CAS  Google Scholar 

  2. Perkel J (2008) Nat Methods 5:447–453

    Article  CAS  Google Scholar 

  3. Talkowski ME, Ernst C, Heilbut A, Chiang C, Hanscom C, Lindgren A, Kirby A, Liu S, Muddukrishna B, Ohsumi TK, Shen Y, Borowsky M, Daly MJ, Morton CC, Gusella JF (2011) Am J Hum Genet 88:469–481

    Article  CAS  Google Scholar 

  4. Maphosa F, de Vos WM, Smidt H (2010) Trends Biotech 28:308–316

    Article  CAS  Google Scholar 

  5. Sforza S, Corradini R, Tedeschi T, Marchelli R (2010) Chem Soc Rev 40:221–232

    Article  Google Scholar 

  6. Sassolas A, Leca-Bouvier BD, Blum LJ (2008) Chem Rev 108:109–139

    Article  CAS  Google Scholar 

  7. D’Agata R, Corradini R, Grasso G, Marchelli R, Spoto G (2008) ChemBioChem 9:2067–2070

    Article  Google Scholar 

  8. D’Agata R, Corradini R, Ferretti C, Zanoli L, Gatti M, Marchelli R, Spoto G (2010) Biosens Bioelectron 25:2095–2100

    Article  Google Scholar 

  9. Pappaerta K, Van Hummelenb P, Vanderhoevena J, Barona GV, Desmet G (2003) Chem Eng Sci 58:4921–4930

    Article  Google Scholar 

  10. Jobs M, Fredriksson S, Brookes AJ, Landegren U (2002) Anal Chem 74:199–202

    Article  CAS  Google Scholar 

  11. Zanoli L, D’Agata R, Spoto G (2008) Minerva Biotechnol 20:165–174

    Google Scholar 

  12. Song H, Chen DL, Ismagilov RF (2006) Angew Chem Int Ed 45:7336–7356

    Article  CAS  Google Scholar 

  13. Casadevall I, Solvas X, de Mello A (2011) Chem Comm 47:1936–1942

    Article  Google Scholar 

  14. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Lab Chip 8:198–220

    Article  CAS  Google Scholar 

  15. Gorris HH, Walt DR (2010) Angew Chem Int Ed 49:3880–3895

    Article  CAS  Google Scholar 

  16. Srisa-Art M, de Mello AJ, Edel JB (2007) Anal Chem 79:6682–6689

    Article  CAS  Google Scholar 

  17. Hsieh AT-H, Pan PJ-H, Lee AP (2009) Microfluid Nanofluid 6:391–401

    Article  CAS  Google Scholar 

  18. Whitesides GM (2006) Nature 442:368–373

    Article  CAS  Google Scholar 

  19. Chiu DT, Lorenz RM, Jeffries GDM (2009) Anal Chem 81:5111–5118

    Article  CAS  Google Scholar 

  20. Wang Y, Li J, Jin J, Wang H, Tang H, Yang R, Wang K (2009) Anal Chem 81:9703–9709

    Article  CAS  Google Scholar 

  21. Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, Wu Y, Medley CD, Cao Z, Li J, Colon P, Lin H, Tan W (2009) Angew Chem Int Ed 48:856–870

    Article  CAS  Google Scholar 

  22. Nielsen PE (1999) Acc Chem Res 32:624–630

    Article  CAS  Google Scholar 

  23. Uno T, Tabata H, Kawai T (2007) Anal Chem 79:52–59

    Article  CAS  Google Scholar 

  24. Gao Z, Agarwal A, Trigg AD, Singh N, Fang C, Tung CH, Fan Y, Buddharaju KD, Kong J (2007) Anal Chem 79:3291–3297

    Article  CAS  Google Scholar 

  25. Germini, Mezzelani A, Lesignoli F, Corradini R, Marchelli R, Bordoni R, Consolandi C, De Bellis G (2004) J Agric Food Chem 52:4535–4540

    Article  CAS  Google Scholar 

  26. Calabretta A, Wasserberg D, Posthuma-Trumpie GA, Subramaniam V, van Amerongen A, Corradini R, Tedeschi T, Sforza S, Reinhoudt DN, Marchelli R, Huskens J, Jonkheijm P (2011) Langmuir 27:1536–1542

    Article  CAS  Google Scholar 

  27. Lejion M, Mousavi-Jazi M, Kubista M (2006) Mol Aspects Med 27:160–175

    Article  Google Scholar 

  28. Tedeschi T, Tonelli A, Sforza S, Corradini R, Marchelli R (2010) Artif DNA PNA XNA 1:83–89

    Article  Google Scholar 

  29. Gaylord BS, Massie MR, Feinstein FC, Bazan GC (2005) Proc Natl Acad Sci U S A 102:34–39

    Article  CAS  Google Scholar 

  30. Kuhn H, Demidov VV, Coull JM, Fiandaca MJ, Gildea BD, Frank-Kamenetskii MD (2002) J Am Chem Soc 124:1097

    Article  CAS  Google Scholar 

  31. Neethirajan S, Kobayashi I, Nakajima M, Wu D, Nandagopal S (2011) Lab Chip 11:1574–1586

    Article  CAS  Google Scholar 

  32. Totsingan F, Rossi S, Corradini R, Tedeschi T, Sforza S, Juris A, Scaravelli E, Marchelli R (2008) Org Biomol Chem 6:1232–1237

    Article  CAS  Google Scholar 

  33. Rossi S (2008) PhD thesis, University of Parma

  34. Doyle JJ, Doyle JL (1987) Phytochem Bull 19:11–15

    Google Scholar 

  35. Grasso G, D’Agata R, Zanoli L, Spoto G (2009) Microchem J 93:82–86

    Article  CAS  Google Scholar 

  36. Grasso G, Fragai M, Rizzarelli E, Spoto G, Yeo KJ (2006) J Mass Spectrom 41:1561–1569

    Article  CAS  Google Scholar 

  37. Wang R, Minunni M, Tombelli S, Mascini M (2004) Biosens Biolectron 20:598–605

    Article  CAS  Google Scholar 

  38. Tice JD, Lyon AD, Ismagilov RF (2004) Anal Chim Acta 507:73–77

    Article  CAS  Google Scholar 

  39. D’Agata R, Breveglieri G, Zanoli LM, Borgatti M, Spoto G, Gambari R (2011) Anal Chem 83:8711–8717

    Article  Google Scholar 

  40. Zanoli LM, D’Agata R, Spoto G (2011) Anal Bioanal Chem. doi:10.1007/s00216-011-5318-3

Download references

Acknowledgments

We acknowledge support from MIUR (PRIN 20093N774P, FIRB RBRN07BMCT, and RBPR05JH2P ITALNANONET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Spoto.

Additional information

Published in the special issue Analytical Science in Italy with guest editor Aldo Roda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanoli, L.M., Licciardello, M., D’Agata, R. et al. Peptide nucleic acid molecular beacons for the detection of PCR amplicons in droplet-based microfluidic devices. Anal Bioanal Chem 405, 615–624 (2013). https://doi.org/10.1007/s00216-011-5638-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5638-3

Keywords

Navigation