Skip to main content
Log in

Beyond nC60: strategies for identification of transformation products of fullerene oxidation in aquatic and biological samples

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Owing to their exceptional properties and versatility, fullerenes are in widespread use for numerous applications. Increased production and use of fullerenes will inevitably result in accelerated environmental release. However, study of the occurrence, fate, and transport of fullerenes in the environment is complicated because a variety of surface modifications can occur as a result of either intentional functionalization or natural processes. To gain a better understanding of the effect and risk of fullerenes on environmental health, it is necessary to acquire reliable data on the parent compounds and their congeners. Whereas currently established quantification methods generally focus on analysis of unmodified fullerenes, we discuss in this review the occurrence and analysis of oxidized fullerene congeners (i.e., their corresponding epoxides and polyhydroxylated derivatives) in the environment and in biological specimens. We present possible strategies for detection and quantification of parent nanomaterials and their various derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wu H, Lin L, Wang P, Jiang S, Dai Z, Zou X (2011) Solubilization of pristine fullerene by the unfolding mechanism of bovine serum albumin for cytotoxic application. Chem Commun (Camb) 47(38):10659–10661

    CAS  Google Scholar 

  2. Bosi S, Da Ros T, Spalluto G, Prato M (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38(11–12):913–923

    CAS  Google Scholar 

  3. Osawa E (2002) Perspectives on fullerene nanotechnology. Kluwer Academic Publishers. Dordrecht, The Netherlands

  4. Hendren CO, Mesnard X, Droge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45(7):2562–2569

    CAS  Google Scholar 

  5. Anctil A, Babbitt CW, Raffaelle RP, Landi BJ (2011) Material and energy intensity of fullerene production. Environ Sci Technol 45(6):2353–2359

    CAS  Google Scholar 

  6. Hadduck AN, Hindagolla V, Contreras AE, Li QL, Bakalinsky AT (2010) Does Aqueous Fullerene Inhibit the Growth of Saccharomyces cerevisiae or Escherichia coli? Appl Environ Microbiol 76(24):8239–8242

    CAS  Google Scholar 

  7. Matsuda S, Matsui S, Shimizu Y, Matsuda T (2011) Genotoxicity of colloidal fullerene C. Environ Sci Technol 45(9):4133–4138

    CAS  Google Scholar 

  8. Morimoto Y, Hirohashi M, Ogami A, Oyabu T, Myojo T, Nishi K, Kadoya C, Todoroki M, Yamamoto M, Murakami M, Shimada M, Wang WN, Yamamoto K, Fujita K, Endoh S, Uchida K, Shinohara N, Nakanishi J, Tanaka I (2010) Inflammogenic effect of well-characterized fullerenes in inhalation and intratracheal instillation studies. Part Fibre Toxicol 7

  9. Musee N, Thwala M, Nota N (2011) The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J Environ Monit 13(5):1164–1183

    CAS  Google Scholar 

  10. Johansen A, Pedersen AL, Jensen KA, Karlson U, Hansen BM, Scott-Fordsmand JJ, Winding A (2008) Effects of C-60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27(9):1895–1903

    CAS  Google Scholar 

  11. Usenko CY, Harper SL, Tanguay RL (2008) Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol Appl Pharmacol 229(1):44–55

    CAS  Google Scholar 

  12. Lyon DY, Adams LK, Falkner JC, Alvarez PJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40(14):4360–4366

    CAS  Google Scholar 

  13. Sayes CM, Marchione AA, Reed KL, Warheit DB (2007) Comparative pulmonary toxicity assessments of C-60 water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett 7(8):2399–2406

    CAS  Google Scholar 

  14. Kovochich M, Espinasse B, Auffan M, Hotze EM, Wessel L, Xia T, Nel AE, Wiesner MR (2009) Comparative toxicity of C60 aggregates toward mammalian cells: role of tetrahydrofuran (THF) decomposition. Environ Sci Technol 43(16):6378–6384

    CAS  Google Scholar 

  15. Zhang B, Cho M, Fortner JD, Lee J, Huang CH, Hughes JB, Kim JH (2009) Delineating Oxidative Processes of Aqueous C-60 Preparations: Role of THF Peroxide. Environ Sci Technol 43(1):108–113

    CAS  Google Scholar 

  16. Lyon DY, Alvarez PJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42(21):8127–8132

    CAS  Google Scholar 

  17. Yan L, Zhao F, Li S, Hu Z, Zhao Y (2011) Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 3(2):362–382

    CAS  Google Scholar 

  18. Sanchis J, Berrojalbiz N, Caballero G, Dachs J, Farre M, Barcelo D (2012) Occurrence of aerosol-bound fullerenes in the mediterranean sea atmosphere. Environ Sci Technol 46(3):1335–1343

    CAS  Google Scholar 

  19. Benn TM, Westerhoff P, Herckes P (2011) Detection of fullerenes (C60 and C70) in commercial cosmetics. Environ Pollut 159(5):1334–1342

    CAS  Google Scholar 

  20. Gao J, Wang HL, Shreve A, Iyer R (2010) Fullerene derivatives induce premature senescence: a new toxicity paradigm or novel biomedical applications. Toxicol Appl Pharmacol 244(2):130–143

    CAS  Google Scholar 

  21. Xia XR, Monteiro-Riviere NA, Riviere JE (2010) Skin penetration and kinetics of pristine fullerenes (C60) topically exposed in industrial organic solvents. Toxicol Appl Pharmacol 242(1):29–37

    CAS  Google Scholar 

  22. Ke PC, Lamm MH (2011) A biophysical perspective of understanding nanoparticles at large. Phys Chem Chem Phys 13(16):7273–7283

    CAS  Google Scholar 

  23. Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Mirkovic M, Dramicanin M, Harhaji L, Raicevic N, Nikolic Z, Trajkovic V (2006) Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci 91(1):173–183

    CAS  Google Scholar 

  24. Maeda-Mamiya R, Noiri E, Isobe H, Nakanishi W, Okamoto K, Doi K, Sugaya T, Izumi T, Homma T, Nakamura E (2010) In vivo gene delivery by cationic tetraamino fullerene. Proc Natl Acad Sci U S A 107(12):5339–5344

    CAS  Google Scholar 

  25. Irie K, Nakamura Y, Ohigashi H, Tokuyama H, Yamago S, Nakamura E (1996) Photocytotoxicity of water-soluble fullerene derivatives. Biosci Biotechnol Biochem 60(8):1359–1361

    CAS  Google Scholar 

  26. Harhaji L, Isakovic A, Vucicevic L, Janjetovic K, Misirkic M, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Nikolic Z, Trajkovic V (2008) Modulation of tumor necrosis factor-mediated cell death by fullerenes. Pharm Res 25(6):1365–1376

    CAS  Google Scholar 

  27. Patra M, Ma X, Isaacson C, Bouchard D, Poynton H, Lazorchak JM, Rogers KR (2011) Changes in agglomeration of fullerenes during ingestion and excretion in Thamnocephalus platyurus. Environ Toxicol Chem 30(4):828–835

    CAS  Google Scholar 

  28. Chae SR, Therezien M, Budarz JF, Wessel L, Lin SH, Xiao Y, Wiesner MR (2011) Comparison of the photosensitivity and bacterial toxicity of spherical and tubular fullerenes of variable aggregate size. J Nanopart Res 13(10):5121–5127

    CAS  Google Scholar 

  29. Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82(3):308–317

    CAS  Google Scholar 

  30. Perez S, Farre M, Barcelo D (2009) Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. Trends Anal Chem 28(6):820–832

    CAS  Google Scholar 

  31. Weinberg H, Galyean A, Leopold M (2011) Evaluating engineered nanoparticles in natural waters. Trends Anal Chem 30(1):72–83

    CAS  Google Scholar 

  32. Wiesner MR, Hotze EM, Brant JA, Espinasse B (2008) Nanomaterials as possible contaminants: the fullerene example. Water Sci Technol 57(3):305–310

    CAS  Google Scholar 

  33. Shinohara N, Nakazato T, Tamura M, Endoh S, Fukui H, Morimoto Y, Myojo T, Shimada M, Yamamoto K, Tao H, Yoshida Y, Nakanishi J (2010) Clearance kinetics of fullerene C nanoparticles from rat lungs after intratracheal C instillation and inhalation C exposure. Toxicol Sci 118(2):564–573

    CAS  Google Scholar 

  34. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139

    CAS  Google Scholar 

  35. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environ Sci Technol 46(4):2242–2250

    Google Scholar 

  36. Baker GL, Gupta A, Clark ML, Valenzuela BR, Staska LM, Harbo SJ, Pierce JT, Dill JA (2008) Inhalation toxicity and lung toxicokinetics of C-60 fullerene nanoparticles and microparticles. Toxicol Sci 101(1):122–131

    CAS  Google Scholar 

  37. Rajagopalan P, Wudl F, Schinazi RF, Boudinot FD (1996) Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob Agents Chemother 40(10):2262–2265

    CAS  Google Scholar 

  38. Johnston HJ, Hutchison GR, Christensen FM, Aschberger K, Stone V (2010) The Biological Mechanisms and Physicochemical Characteristics Responsible for Driving Fullerene Toxicity. Toxicol Sci 114(2):162–182

    CAS  Google Scholar 

  39. Aschberger K, Johnston HJ, Stone V, Aitken RJ, Tran CL, Hankin SM, Peters SA, Christensen FM (2010) Review of fullerene toxicity and exposure—appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol 58(3):455–473

    CAS  Google Scholar 

  40. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345

    CAS  Google Scholar 

  41. Lee TH, Yao N, Chen TJ, Hsu WK (2002) Fullerene-like carbon particles in petrol soot. Carbon 40(12):2275–2279

    CAS  Google Scholar 

  42. Su Z, Zhou W, Zhang Y (2011) New insight into the soot nanoparticles in a candle flame. Chem Commun (Camb) 47(16):4700–4702

    CAS  Google Scholar 

  43. Murr LE, Soto KF (2005) A TEM study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources. Mater Charact 55(1):50–65

    CAS  Google Scholar 

  44. Buseck PR, Tsipursky SJ, Hettich R (1992) Fullerenes from the geological environment. Science 257(5067):215–217

    CAS  Google Scholar 

  45. Farre M, Perez S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda A, Barcelo D (2010) First determination of C-60 andC(70) fullerenes and N-methylfulleropyrrolidine C-60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J Hydrol 383(1–2):44–51

    CAS  Google Scholar 

  46. Koelmans AA, Nowack B, Wiesner MR (2009) Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments. Environ Pollut 157(4):1110–1116

    CAS  Google Scholar 

  47. Heymann D (1996) Solubility of fullerenes C-60 and C-70 in seven normal alcohols and their deduced solubility in water. Fuller Sci Technol 4:509–515

    CAS  Google Scholar 

  48. Bouchard D, Ma X, Isaacson C (2009) Colloidal properties of aqueous fullerenes: isoelectric points and aggregation kinetics of C60 and C60 derivatives. Environ Sci Technol 43(17):6597–6603

    CAS  Google Scholar 

  49. Duncan LK, Jinschek JR, Vikesland PJ (2008) C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge. Environ Sci Technol 42(1):173–178

    CAS  Google Scholar 

  50. Handy RD, von der Kammer F, Lead JR, Hassellov M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17(4):287–314

    CAS  Google Scholar 

  51. Chen KL, Smith BA, Ball WP, Fairbrother DH (2010) Assessing the colloidal properties of engineered nanoparticles in water: case studies from fullerene C-60 nanoparticles and carbon nanotubes. Environ Chem 7(1):10–27

    CAS  Google Scholar 

  52. Ma X, Bouchard D (2009) Formation of aqueous suspensions of fullerenes. Environ Sci Technol 43(2):330–336

    CAS  Google Scholar 

  53. Qu X, Hwang YS, Alvarez PJ, Bouchard D, Li Q (2010) UV irradiation and humic acid mediate aggregation of aqueous fullerene (nC) nanoparticles. Environ Sci Technol 44(20):7821–7826

    CAS  Google Scholar 

  54. Chen KL, Elimelech M (2006) Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22(26):10994–11001

    CAS  Google Scholar 

  55. Chen KL, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C-60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci 309(1):126–134

    CAS  Google Scholar 

  56. Chen KL, Elimelech M (2009) Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ Sci Technol 43(19):7270–7276

    CAS  Google Scholar 

  57. Chen KL, Elimelech M (2008) Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications. Environ Sci Technol 42(20):7607–7614

    CAS  Google Scholar 

  58. Andrievsky GV, Klochkov VK, Bordyuh AB, Dovbeshko GI (2002) Comparative analysis of two aqueous-colloidal solutions of C-60 fullerene with help of FTIR reflectance and UV–Vis spectroscopy. Chem Phys Lett 364(1–2):8–17

    CAS  Google Scholar 

  59. Labille J, Masion A, Ziarelli F, Rose J, Brant J, Villieras F, Pelletier M, Borschneck D, Wiesner MR, Bottero JY (2009) Hydration and dispersion of C60 in aqueous systems: the nature of water–fullerene interactions. Langmuir 25(19):11232–11235

    CAS  Google Scholar 

  60. Pospisil L, Gal M, Hromadova M, Bulickova J, Kolivoska V, Cvacka J, Novakova K, Kavan L, Zukalova M, Dunsch L (2010) Search for the form of fullerene C(60) in aqueous medium. Phys Chem Chem Phys 12(42):14095–14101

    CAS  Google Scholar 

  61. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222

    CAS  Google Scholar 

  62. Tiede K, Hassellov M, Breitbarth E, Chaudhry Q, Boxall AB (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A 1216(3):503–509

    CAS  Google Scholar 

  63. van Wezel AP, Moriniere V, Emke E, ter Laak T, Hogenboom AC (2011) Quantifying summed fullerene nC(60) and related transformation products in water using LC LTQ Orbitrap MS and application to environmental samples. Environ Int 37(6):1063–1067

    Google Scholar 

  64. Wang C, Shang C, Westerhoff P (2010) Quantification of fullerene aggregate nC60 in wastewater by high-performance liquid chromatography with UV–vis spectroscopic and mass spectrometric detection. Chemosphere 80(3):334–339

    Google Scholar 

  65. Kummerer K, Menz J, Schubert T, Thielemans W (2011) Biodegradability of organic nanoparticles in the aqueous environment. Chemosphere 82(10):1387–1392

    Google Scholar 

  66. Kiser MA, Ryu H, Jang H, Hristovski K, Westerhoff P (2010) Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res 44(14):4105–4114

    CAS  Google Scholar 

  67. Wang Y, Westerhoff P, Hristovski KD (2012) Fate and biological effects of silver, titanium dioxide, and C (fullerene) nanomaterials during simulated wastewater treatment processes. J Hazard Mater 201–202:16–22

    Google Scholar 

  68. Mukherji ST, Leisen J, Hughes JB (2011) Removal and biosorption of C from water by an aquatic plant, Ceratophyllum sp. Chemosphere 84(4):390–396

    CAS  Google Scholar 

  69. Shareef A, Li GH, Kookana RS (2010) Quantitative determination of fullerene (C-60) in soils by high performance liquid chromatography and accelerated solvent extraction technique. Environ Chem 7(3):292–297

    CAS  Google Scholar 

  70. Wang J, Cai Q, Fang Y, Anderson TA, Cobb GP (2011) Determination of fullerenes (C60) in artificial sediments by liquid chromatography. Talanta 87:35–39

    CAS  Google Scholar 

  71. Zhang L, Wang L, Zhang P, Kan AT, Chen W, Tomson MB (2011) Facilitated Transport of 2,2',5,5'-Polychlorinated Biphenyl and Phenanthrene by Fullerene Nanoparticles through Sandy Soil Columns. Environ Sci Technol 45(4):1341–1348

    Google Scholar 

  72. Pan B, Lin D, Mashayekhi H, Xing B (2008) Adsorption and hysteresis of bisphenol A and 17alpha-ethinyl estradiol on carbon nanomaterials. Environ Sci Technol 42(15):5480–5485

    CAS  Google Scholar 

  73. Baena JR, Gallego M, Valcarcel M (2002) Fullerenes in the analytical sciences. Trends Anal Chem 21(3):187–198

    CAS  Google Scholar 

  74. Vallant RM, Szabo Z, Bachmann S, Bakry R, Najam-ul-Haq M, Rainer M, Heigl N, Petter C, Huck CW, Bonn GK (2007) Development and application of C60-fullerene bound silica for solid-phase extraction of biomolecules. Anal Chem 79(21):8144–8153

    CAS  Google Scholar 

  75. Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38(19):5164–5169

    CAS  Google Scholar 

  76. Taylor R, Parsons JP, Avent AG, Rannard SP, Dennis TJ, Hare JP, Kroto HW, Walton DRM (1991) Degradation of C60 by light. Nature 351:277

    CAS  Google Scholar 

  77. Hou WC, Jafvert CT (2009) Photochemical transformation of aqueous C60 clusters in sunlight. Environ Sci Technol 43(2):362–367

    CAS  Google Scholar 

  78. Hwang YS, Li Q (2010) Characterizing photochemical transformation of aqueous nC60 under environmentally relevant conditions. Environ Sci Technol 44(8):3008–3013

    CAS  Google Scholar 

  79. Lee I, Mackeyev Y, Cho M, Li D, Kim JH, Wilson LJ, Alvarez PJ (2009) Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems. Environ Sci Technol 43(17):6604–6610

    CAS  Google Scholar 

  80. Hou WC, Jafvert CT (2009) Photochemistry of Aqueous C(60) Clusters: Evidence of (1)O(2) Formation and its Role in Mediating C(60) Phototransformation. Environ Sci Technol 43(14):5257–5262

    CAS  Google Scholar 

  81. Schuster DI, Baran PS, Hatch RK, Khan AU, Wilson SR (1998) The role of singlet oxygen in the photochemical formation of C60O. Chem Commun 22:2493–2494

    Google Scholar 

  82. Malhotra R, Kumar S, Satyam A (1994) Ozonolysis of [60]Fullerene. J Chem Soc Chem Commun 11:1339–1340

    Google Scholar 

  83. Fortner JD, Kim DI, Boyd AM, Falkner JC, Moran S, Colvin VL, Hughes JB, Kim JH (2007) Reaction of water-stable C60 aggregates with ozone. Environ Sci Technol 41(21):7497–7502

    CAS  Google Scholar 

  84. Lee J, Song W, Jang SS, Fortner JD, Alvarez PJ, Cooper WJ, Kim JH (2010) Stability of water-stable C60 clusters to OH radical oxidation and hydrated electron reduction. Environ Sci Technol 44(10):3786–3792

    CAS  Google Scholar 

  85. Kong L, Tedrow O, Chan YF, Zepp RG (2009) Light-initiated transformations of fullerenol in aqueous media. Environ Sci Technol 43(24):9155–9160

    CAS  Google Scholar 

  86. Schreiner KM, Filley TR, Blanchette RA, Bowen BB, Bolskar RD, Hockaday WC, Masiello CA, Raebiger JW (2009) White-rot basidiomycete-mediated decomposition of C60 fullerol. Environ Sci Technol 43(9):3162–3168

    CAS  Google Scholar 

  87. Dordevic A, Bogdanovic G (2008) Fullerenol: a new nanopharmaceutic? Arch Oncol 16(3–4):42–45

    Google Scholar 

  88. Ringwood AH, Levi-Polyachenko N, Carroll DL (2009) Fullerene exposures with oysters: embryonic, adult, and cellular responses. Environ Sci Technol 43(18):7136–7141

    CAS  Google Scholar 

  89. Brausch KA, Anderson TA, Smith PN, Maul JD (2010) Effects of functionalized fullerenes on bifenthrin and tribufos toxicity to Daphnia magna: Survival, reproduction, and growth rate. Environ Toxicol Chem 29(11):2600–2606

    CAS  Google Scholar 

  90. Brausch KA, Anderson TA, Smith PN, Maul JD (2011) The effect of fullerenes and functionalized fullerenes on Daphnia magna phototaxis and swimming behavior. Environ Toxicol Chem 30(4):878–884

    CAS  Google Scholar 

  91. Zhu SQ, Oberdorster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C-60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62:S5–S9

    CAS  Google Scholar 

  92. Tao X, Fortner JD, Zhang B, He Y, Chen Y, Hughes JB (2009) Effects of aqueous stable fullerene nanocrystals (nC60) on Daphnia magna: evaluation of sub-lethal reproductive responses and accumulation. Chemosphere 77(11):1482–1487

    CAS  Google Scholar 

  93. Pakarinen K, Petersen EJ, Leppanen MT, Akkanen J, Kukkonen JV (2011) Adverse effects of fullerenes (nC60) spiked to sediments on Lumbriculus variegatus (Oligochaeta). Environ Pollut 159(12):3750–3756

    CAS  Google Scholar 

  94. Scott-Fordsmand JJ, Krogh PH, Schaefer M, Johansen A (2008) The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms. Ecotoxicol Environ Saf 71(3):616–619

    CAS  Google Scholar 

  95. Li D, Alvarez PJ (2011) Avoidance, weight loss, and cocoon production assessment for Eisenia fetida exposed to C in soil. Environ Toxicol Chem 30(11):2542–2545

    CAS  Google Scholar 

  96. Isaacson CW, Usenko CY, Tanguay RL, Field JA (2007) Quantification of fullerenes by LC/ESI–MS and its application to in vivo toxicity assays. Anal Chem 79(23):9091–9097

    CAS  Google Scholar 

  97. Kim KT, Jang MH, Kim JY, Kim SD (2010) Effect of preparation methods on toxicity of fullerene water suspensions to Japanese medaka embryos. Sci Total Environ 408(22):5606–5612

    CAS  Google Scholar 

  98. Blickley TM, McClellan-Green P (2008) Toxicity of aqueous fullerene in adult and larval Fundulus heteroclitus. Environ Toxicol Chem 27(9):1964–1971

    CAS  Google Scholar 

  99. Daroczi B, Kari G, McAleer MF, Wolf JC, Rodeck U, Dicker AP (2006) In vivo radioprotection by the fullerene nanoparticle DF-1 as assessed in a zebrafish model. Clin Cancer Res 12(23):7086–7091

    CAS  Google Scholar 

  100. Jovanovic B, Ji T, Palic D (2011) Gene expression of zebrafish embryos exposed to titanium dioxide nanoparticles and hydroxylated fullerenes. Ecotoxicol Environ Saf 74(6):1518–1525

    CAS  Google Scholar 

  101. Zhu X, Zhu L, Li Y, Duan Z, Chen W, Alvarez PJ (2007) Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol. Environ Toxicol Chem 26(5):976–979

    CAS  Google Scholar 

  102. Gao J, Wang Y, Folta KM, Krishna V, Bai W, Indeglia P, Georgieva A, Nakamura H, Koopman B, Moudgil B (2011) Polyhydroxy fullerenes (fullerols or fullerenols): beneficial effects on growth and lifespan in diverse biological models. PLoS One 6(5):e19976

    CAS  Google Scholar 

  103. Nikolic N, Vranjes-Ethuric S, Jankovic D, Ethokic D, Mirkovic M, Bibic N, Trajkovic V (2009) Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals. Nanotechnology 20(38):385102

    Google Scholar 

  104. Li D, Fortner JD, Johnson DR, Chen C, Li Q, Alvarez PJ (2010) Bioaccumulation of 14C60 by the earthworm Eisenia fetida. Environ Sci Technol 44(23):9170–9175

    CAS  Google Scholar 

  105. Petersen EJ, Huang Q, Weber WJ Jr (2008) Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida. Environ Sci Technol 42(8):3090–3095

    CAS  Google Scholar 

  106. Benn TM, Pycke BF, Herckes P, Westerhoff P, Halden RU (2011) Evaluation of extraction methods for quantification of aqueous fullerenes in urine. Anal Bioanal Chem 399(4):1631–1639

    CAS  Google Scholar 

  107. Vileno B, Marcoux PR, Lekka M, Sienkiewicz A, Feher T, Forro L (2006) Spectroscopic and photophysical properties of a highly derivatized C-60 fullerol. Adv Funct Mater 16(1):120–128

    CAS  Google Scholar 

  108. Isaacson CW, Kleber M, Field JA (2009) Quantitative analysis of fullerene nanomaterials in environmental systems: a critical review. Environ Sci Technol 43(17):6463–6474

    CAS  Google Scholar 

  109. Chao TC, Song G, Hansmeier N, Westerhoff P, Herckes P, Halden RU (2011) Characterization and Liquid Chromatography–MS/MS Based Quantification of Hydroxylated Fullerenes. Anal Chem 83(5):1777–1783

    Google Scholar 

  110. Takahashi H, Tohji K, Matsuoka I, Jeyadevan B, Kasuya A, Ito S, Nishina Y, Nirasawa T (1998) Extraction and purification of dimeric fullerene oxides from fullerene soot. J Phys Chem B 102(28):5438–5443

    CAS  Google Scholar 

  111. Moonen NNP, Thilgen C, Echegoyen L, Diederich F (2000) The chemical retro-Bingel reaction: selective removal of bis(alkoxycarbonyl)methano addends from C-60 and C-70 with amalgamated magnesium. Chem Commun 5:335–336

    Google Scholar 

  112. Martín N, Segura JL, Wudl F (2002) In: Guldi DM, Martin N (eds) Fullerenes: from synthesis to optoelectronic properties. Kluwer Academic Publishers, Dordrecht, pp 81–120

  113. Filippone S, Izquierdo Barroso M, Martín-Domenech A, Osuna S, Solà M, Martín N (2008) On the Mechanism of the Thermal Retrocycloaddition of Pyrrolidinofullerenes (Retro-Prato Reaction). Chem Eur J 14:5198–5206

    CAS  Google Scholar 

  114. Naim A, Shevlin PB (1992) Reversible addition of hydroxide to the fullerenes. Tetrahedron Lett 33(47):7097–7100

    CAS  Google Scholar 

  115. Xing GM, Zhang J, Zhao YL, Tang J, Zhang B, Gao XF, Yuan H, Qu L, Cao WB, Chai ZF, Ibrahim K, Su R (2004) Influences of structural properties on stability of fullerenols. J Phys Chem B 108(31):11473–11479

    CAS  Google Scholar 

  116. Goswami TK, Singh R, Alam S, Mathur GN (2004) Thermal analysis: a unique method to estimate the number of substituents in fullerene derivatives. Thermochim Acta 419(1–2):97–104

    CAS  Google Scholar 

  117. Delhomme O, Herckes P, Millet M (2007) Determination of nitro-polycyclic aromatic hydrocarbons in atmospheric aerosols using HPLC fluorescence with a post-column derivatisation technique. Anal Bioanal Chem 389(6):1953–1959

    CAS  Google Scholar 

  118. Creegan KM, Robbins JL, Robbins WK, Millar JM, Sherwood RD, Tindall PJ, Cox DM, Smith AB, Mccauley JP, Jones DR, Gallagher RT (1992) Synthesis and Characterization of (C60)O, the 1st Fullerene Epoxide. J Am Chem Soc 114(3):1103–1105

    CAS  Google Scholar 

  119. Chiang LY, Upasani RB, Swirczewski JW, Soled S (1993) Evidence of Hemiketals Incorporated in the Structure of Fullerols Derived from Aqueous Acid Chemistry. J Am Chem Soc 115(13):5453–5457

    CAS  Google Scholar 

  120. Chiang LY, Bhonsle JB, Wang LY, Shu SF, Chang TM, Hwu JR (1996) Efficient one-flask synthesis of water-soluble [60]fullerenols. Tetrahedron 52(14):4963–4972

    CAS  Google Scholar 

  121. Kokubo K, Matsubayashi K, Tategaki H, Takada H, Oshima T (2008) Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2(2):327–333

    CAS  Google Scholar 

  122. Li J, Takeuchi A, Ozawa M, Li XH, Saigo K, Kitazawa K (1993) C-60 Fullerol Formation Catalyzed by Quaternary Ammonium Hydroxides. J Chem Soc Chem Commun 23:1784–1785

    Google Scholar 

  123. Troshin PA, Astakhova AS, Lyubovskaya RN (2005) Synthesis of fullerenols from halofullerenes. Fuller Nanotub Carbon N 13:331–343

    CAS  Google Scholar 

  124. Xia XR, Monteiro-Riviere NA, Riviere JE (2006) Trace analysis of fullerenes in biological samples by simplified liquid–liquid extraction and high-performance liquid chromatography. J Chromatogr A 1129(2):216–222

    CAS  Google Scholar 

  125. Pycke BF, Benn TM, Herckes P, Westerhoff P, Halden RU (2011) Strategies for quantifying C(60) fullerenes in environmental and biological samples and implications for studies in environmental health and ecotoxicology. Trends Anal Chem 30(1):44–57

    CAS  Google Scholar 

  126. Zhou LH, Deng HM, Deng QY, Zheng LP, Cao Y (2005) Analysis of three different types of fullerene derivatives by laser desorption/ionization time-of-flight mass spectrometry with new matrices. Rapid Commun Mass Spectrom 19(23):3523–3530

    CAS  Google Scholar 

  127. Hyung H, Kim JH (2009) Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes. Water Res 43(9):2463–2470

    CAS  Google Scholar 

  128. Chen Z, Westerhoff P, Herckes P (2008) Quantification of C60 Fullerene Concentrations in Water. Environ Toxicol Chem 27(9):1852–1859

    Google Scholar 

  129. Santa T, Yoshioka D, Homma H, Imai K, Satoh M, Takayanagi I (1995) High-Performance Liquid-Chromatography of Fullerence (C-60) in Plasma Using Ultraviolet and Mass-Spectrometric Detection. Biol Pharm Bull 18(9):1171–1174

    CAS  Google Scholar 

  130. Moussa F, Pressac M, Genin E, Roux S, Trivin F, Rassat A, Ceolin R, Szwarc H (1997) Quantitative analysis of C60 fullerene in blood and tissues by high-performance liquid chromatography with photodiode-array and mass spectrometric detection. J Chromatogr B: Biomed Sci Appl 696(1):153–159

    CAS  Google Scholar 

  131. Bouchard D, Ma X (2008) Extraction and high-performance liquid chromatographic analysis of C60, C70, and [6, 6]-phenyl C61-butyric acid methyl ester in synthetic and natural waters. J Chromatogr A 1203(2):153–159

    CAS  Google Scholar 

  132. Isaacson CW, Bouchard D (2010) Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photo-ionization mass spectrometry. J Chromatogr A 1217(9):1506–1512

    CAS  Google Scholar 

  133. Kawano S, Murata H, Mikami H, Mukaibatake K, Waki H (2006) Method optimization for analysis of fullerenes by liquid chromatography/atmospheric pressure photoionization mass spectrometry. Rapid Commun Mass Spectrom 20(18):2783–2785

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH Grand Opportunities (RC2) program NANO-GO NIEHS Grant DE-FG02-08ER64613.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf U. Halden.

Additional information

Benny F.G. Pycke and Tzu-Chiao Chao contributed equally to this work.

Published in the topical collection Emerging Contaminants in Biota with guest editors Yolanda Picó and Damià Barceló.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pycke, B.F.G., Chao, TC., Herckes, P. et al. Beyond nC60: strategies for identification of transformation products of fullerene oxidation in aquatic and biological samples. Anal Bioanal Chem 404, 2583–2595 (2012). https://doi.org/10.1007/s00216-012-6090-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6090-8

Keywords

Navigation