Skip to main content
Log in

Probiotic strains: survival under simulated gastrointestinal conditions, in vitro adhesion to Caco-2 cells and effect on cytokine secretion

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This study evaluated three probiotic strains (Lactobacillus paracasei subsp. paracasei LC-01, L. acidophilus LA-5, Bifidobacterium lactis Bb-12) and two yoghurt strains (L. delbrueckii subsp. bulgaricus LBY-27 and Streptococcus thermophilus STY-31) with regard to their resistance to simulated gastrointestinal stress, and their ability to interact with human intestinal epithelial cells. The viability of strains was analyzed by measurements of fluorescence-stained cells and their growth by plate colony-counts. The results reveal that for all tested strains, gastric emptying (above pH 3.0) would release a large number of viable cells ranging from 91% for L. paracasei to 53% for S. thermophilus into the intestinal tract, and that between 12 and 23% of them subsequently survive intestinal stress. Among them L. paracasei showed the highest resistance to gastric stress. All the bacteria adhered to the Caco-2 cell line, with the highest adhesions being observed for L. delbrueckii subsp. bulgaricus (9%) and L. acidophilus (7%). Binding of all strains to Caco-2 cells did not result in a significant increase in the production of IL-6 and IL-8 cytokines, suggesting that these bacteria do not trigger an overt inflammatory response in human intestine epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. FAO/WHO (2002) ftp://ftp.fao.org/es/esn/food/wgreport2.pdf

  2. Párvez S, Malik KA, Ah Kang S, Kim H-Y (2006) J Appl Microbiol 100:1171–1185

    Article  Google Scholar 

  3. Roy D (2005) Lait 85:39–56

    Article  CAS  Google Scholar 

  4. Marco ML, Bongers RS, de Vos WM, Kleerebezem M (2007) Appl Environ Microbiol 73:124–132

    Article  CAS  Google Scholar 

  5. CODEX Alimentarius Commission (2003) Codex Stan 243–2003 http://www.codexalimentarius.net/download/standards/400/CXS_243e.pdf

  6. Marteau P, Minekus M, Havenaar R, Huis In′t Veld JHJ (1997) J Dairy Sci 80:1031–1037

    CAS  Google Scholar 

  7. Saarela M, Virkajärvi I, Alakomi H-L, Mattila-Sandholm T, Vaari A, Suomalainen T, Mätto J (2005) J Appl Microbiol 99:1330–1339

    Article  CAS  Google Scholar 

  8. Masco L, Crockaert C, Van Hoorde K, Swings J, Huys G (2007) J Dairy Sci 90:3572–3578

    Article  CAS  Google Scholar 

  9. Mainville I, Arcand Y, Farnworth ER (2005) Int J Food Microbiol 99:287–296

    Article  CAS  Google Scholar 

  10. Kell DB, Kaprelyants AS, Weichart DH, Harwood CR, Barer MR (1998) Antonie Van Leeuwenhoek 73:169–187

    Article  CAS  Google Scholar 

  11. Breeuwer P, Abee T (2000) Int J Food Microbiol 55:193–200

    Article  CAS  Google Scholar 

  12. Lahtinen SJ, Gueimonde M, Ouwehand AC, Reinikainen JP, Salminen SJ (2006) Food Microbiol 23:571–577

    Article  Google Scholar 

  13. Brehm-Stecher BF, Johnson EA (2004) Microbiol Mol Biol Rev 68:538–559

    Article  CAS  Google Scholar 

  14. Auty MAE, Gardiner GE, McBrearty SJ, O’Sullivan EO, Mulvihill DM, Collins JK, Fitzgerald GF, Stanton C, Ross RP (2001) Appl Environ Microbiol 67:420–425

    Article  CAS  Google Scholar 

  15. Moreno Y, Collado MC, Ferrús MA, Cobo JM, Hernández E, Hernández M (2006) Int J Food Sci Tech 41:275–280

    Article  CAS  Google Scholar 

  16. Alander M, Satokari R, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T, Von Wright A (1999) Appl Environ Microbiol 65:351–354

    CAS  Google Scholar 

  17. Vesterlund S, Paltta J, Karp M, Ouwehand AC (2005) J Microbiol Methods 60:225–233

    Article  CAS  Google Scholar 

  18. Ouwehand AC, Salminen S (2003) Microb Ecol Health Dis 15:175–184

    Article  Google Scholar 

  19. Riedel CU, Foata F, Goldstein DR, Blum S, Elkmanns J (2006) Int J Food Microbiol 110:62–68

    Article  CAS  Google Scholar 

  20. Salminen S, Bouley C, Boutron-Ruault M-C, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau M-C, Roberfroid M, Rowland I (1998) Br J Nutr 80:S147–S171

    Article  CAS  Google Scholar 

  21. Morita H, He F, Fuse T, Ouwehand AC, Hashimoto H, Hosoda M, Mizumachi K, Kurisaki J-I (2002) Microbiol Immunol 46:293–297

    CAS  Google Scholar 

  22. Isolauri E, Kirjavainen PV, Salminen S (2002) Gut 50:III54–III59

    Article  Google Scholar 

  23. Isolauri E (1999) Curr Opin Gastroenterol 15:534–537

    Article  CAS  Google Scholar 

  24. Tabasco R, Paarup T, Janer C, Peláez C, Requena T (2007) Int Dairy J 17:1107–1114

    Article  CAS  Google Scholar 

  25. Huang Y, Adams MC (2004) Int J Food Microbiol 91:253–260

    Article  Google Scholar 

  26. Fernández de Palencia P, Peláez C, Requena T, Martín-Hernández C (1995) Z Lebensm Unters Forsch 201:87–90

    Article  Google Scholar 

  27. Alakomi H-L, Mättö J, Virkajärvi I, Saarela M (2005) J Microbiol Methods 62:25–35

    Article  CAS  Google Scholar 

  28. Fasoli S, Marzotto M, Rizzotti L, Rossi F, Dellaglio F, Torriani S (2003) Int J Food Microbiol 82:59–70

    Article  CAS  Google Scholar 

  29. Masco L, Huys G, De Brandt E, Temmerman R, Swings J (2005) Int J Food Microbiol 102:221–230

    Article  CAS  Google Scholar 

  30. Bunthof CJ, van Schalkwijk S, Meijer W, Abee T, Hugenholtz J (2001) Appl Environ Microbiol 67:4264–4271

    Article  CAS  Google Scholar 

  31. Collado MC, Moreno Y, Hernández E, Cobo JM, Hernández M (2005) Food Sci Tech Int 11:307–314

    Article  Google Scholar 

  32. Succi M, Tremonte P, Reale A, Sorrentino E, Grazia L, Pacifico S, Coppola R (2005) FEMS Microbiol Lett 244:129–137

    Article  CAS  Google Scholar 

  33. Mater DDG, Bretigny L, Firmesse O, Flores MJ, Mogenet A, Bresson JL, Corthier G (2005) FEMS Microbiol Lett 250:185–187

    Article  CAS  Google Scholar 

  34. Elli M, Callegari ML, Ferrari S, Veis E, Cattivelli D, Soldi S, Morelli L, Feuillerat NG, Antoine J-M (2006) Appl Environ Microbiol 72:5113–5117

    Article  CAS  Google Scholar 

  35. Van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Antonie Van Leeuwenhoek 82:187–216

    Article  Google Scholar 

  36. Noriega L, Gueimonde M, Sánchez B, Margolles A, De los Reyes-Gavilán CG (2004) Int J Food Microbiol 94:79–86

    Article  CAS  Google Scholar 

  37. Sánchez B, De los Reyes-Gavilán CG, Margolles A (2006) Appl Environ Microbiol 8:1825–1833

    Article  CAS  Google Scholar 

  38. Mättö K, Fondén R, Tolvanen T, von Wright A, Vilpponen-Salmela T, Satokari R, Saarela M (2006) Int Dairy J 16:1174–1180

    Article  CAS  Google Scholar 

  39. Gueimonde M, Noriega L, Margolles A, De los Reyes-Gavilán CG, Salminen S (2005) Int J Food Microbiol 101:341–346

    Article  CAS  Google Scholar 

  40. Collado MC, Gueimonde M, Sanz Y, Salminen S (2006) J Food Prot 69:1675–79

    Google Scholar 

  41. Vinderola CG, Medici M, Perdigón G (2004) J Appl Microbiol 96:230–243

    Article  CAS  Google Scholar 

  42. Von der Weid T, Bulliard C, Shiffrin EJ (2001) Clin Diagn Lab Immunol 8:695–701

    Article  Google Scholar 

  43. Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzpoulos G, Pot B, Tsakalidou E (2006) Int Dairy J 16:189–199

    Article  CAS  Google Scholar 

  44. Chou LS, Weimer B (1999) J Dairy Sci 82:23–31

    Article  CAS  Google Scholar 

  45. Azcárate-Peril MA, Altermann E, Hoover-Fitzula RL, Cano RJ, Klaenhammer TR (2004) Appl Environ Microbiol 70:5315–5322

    Article  CAS  Google Scholar 

  46. Pfeiler EA, Azcárate-Peril MA, Klaenhammer TR (2007) J Bacteriol 189:4624–4634

    Article  CAS  Google Scholar 

  47. Buck BL, Altermann E, Svingerud T, Klaenhammer TR (2005) Appl Environ Microbiol 71:8344–8351

    Article  CAS  Google Scholar 

  48. Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S (2003) J Appl Microbiol 94:981–987

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Stephen Elson for the critical reading of the manuscript. This work was supported by the following Spanish entities: Ministerio de Educación y Ciencia (MEC) (grants: AGL2004-07285-C02-01 and AGL2006-11932-C05-01), by MEC-Consejo Superior de Investigaciones Científicas (grant 2006 7 0I026) and by Comunidad de Madrid (grant S-0505/AGR-0153) and Consolider Ingenio 2010: Fun-c-Food CSD2007-00063. The research leading to these results has also received funding from the European Community’s Seventh Framework Programme (FP7/2007-2011) under grant agreement no. 211441.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Fernández de Palencia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1 (PPT 45 kb)

Supplementary Table S1 (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández de Palencia, P., López, P., Corbí, A.L. et al. Probiotic strains: survival under simulated gastrointestinal conditions, in vitro adhesion to Caco-2 cells and effect on cytokine secretion. Eur Food Res Technol 227, 1475–1484 (2008). https://doi.org/10.1007/s00217-008-0870-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0870-6

Keywords

Navigation