Skip to main content
Log in

Time series analysis of magnetoencephalographic data during copying

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We used standard time series modeling to analyze magnetoencephalographic (MEG) data acquired during three tasks. Each task lasted 45 s, for a total data acquisition period of 135 s. Ten healthy human subjects fixated their eyes on a central blue point for 45 s (fixation only, “F” task). Then a pentagon (visual template) appeared surrounding the fixation point which simultaneously became red (fixation + template, “FT” task). After 45 s, the fixation point changed to green, which was the “go” signal for the subjects to begin continuously copying the pentagon for 45 s using a joystick and without visual feedback of their movement trajectory (fixation + template + copying, “FTC” task). MEG data were acquired continuously from 248 axial gradiometers at a sampling rate of 1017.25 Hz. After removal of cardiac artifacts and rejection of records with eyeblink artifacts, a Box–Jenkins autoregressive integrative moving average (ARIMA) analysis was applied to the unsmoothed, unaveraged MEG time series for model identification and estimation within 25 time lags (~25 ms). We found that an ARIMA model of 25th order autoregressive, first order differencing, and first order moving average (p=25, d=1, q=1) adequately modeled the series and yielded residuals practically stationary with respect to their mean, variance, and autocorrelation structure. These “prewhitened” residuals were then used for assessing pairwise associations between series using crosscorrelation analysis with ±25 time lags (~ ±25 ms). The cross-correlograms thus obtained revealed rich and consistent patterns of interactions between series with respect to positive and/or negative correlations. The overall prevalence of these patterns was very similar in the three tasks used, and, for particular sensor pairs, they tended to be preserved across tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alary F, Simoes C, Jousmaki V, Forss N, Hari R (2002) Cortical activation associated with passive movements of the human index finger: an MEG study. Neuroimage 15:691–696

    Article  CAS  PubMed  Google Scholar 

  • Andrew C, Pfurtscheller G (1996) Event-related coherence as a tool for studying dynamic interaction of brain regions. Electroencephalogr Clin Neurophysiol 98:144–148

    Article  CAS  PubMed  Google Scholar 

  • Box GEP, Jenkins GW (1970) Time series analysis: forecasting and control. Holden Day, San Francisco, CA

    Google Scholar 

  • Bressler SL (1995) Large-scale cortical networks and cognition. Brain Res Rev 20:288–304

    Article  CAS  PubMed  Google Scholar 

  • Curio G, Mackert BM, Burghoff M, Neumann J, Nolte G, Scherg M, Marx P (1997) Somatotopic source arrangement of 600 Hz oscillatory magnetic fields at the human primary somatosensory hand cortex. Neurosci Lett 234:131–134

    Article  CAS  PubMed  Google Scholar 

  • De Araujo DB, Baffa O, Wakai RT (2002) Theta oscillations and human navigation: a magnetoencephalography study. J Cogn Neurosci 14:70–78

    Article  PubMed  Google Scholar 

  • Ding M, Bressler SL, Yang W, Liang H (2000) Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biol Cybern 83:35–45

    Article  CAS  PubMed  Google Scholar 

  • Fries P, Schroeder J-H, Roefsema PR, Singer W, Engel AK (2002) Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection. J Neurosci 22:3739–3754

    CAS  PubMed  Google Scholar 

  • Gevins AS, Schaffer RE, Doyle JC, Cutillo BA, Tannehill RS, Bressler SL (1981) Shadows of thought: shifting lateralization of human brain electrical patterns during brief visuomotor task. Science 213:918–922

    CAS  PubMed  Google Scholar 

  • Gobbele R, Buchner H, Scherg M, Curio G (1999) Stability of high-frequency (600 Hz) components in human somatosensory evoked potentials under variation of stimulus rate–evidence for a thalamic origin. Clin Neurophysiol 110:1659–1663

    Article  CAS  PubMed  Google Scholar 

  • Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci USA 98:694–699

    Article  CAS  PubMed  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa O (1993) Magnetoencephalography—theory, instrumentation and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  • Herculano-Houzel S, Munk MHJ, Neuenschwander S, Singer W (1999) Precisely synchronized oscillatory firing patterns require electroencephalographic activation. J Neurosci 19:3992–4010

    CAS  PubMed  Google Scholar 

  • Hillebrand A, Barnes GR (2002) A quantitive assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. Neuroimage 16:638–650

    Article  CAS  PubMed  Google Scholar 

  • Ioannides AA, Corsi-Cabrera M, Fenwick PB, del Rio Portilla Y, Laskaris NA, Khurshudyan A, Theofilou D, Shibata T, Uchida S, Nakabayashi T, Kostopoulos GK (2004) MEG tomography of human cortex and brainstem activity in waking and REM sleep saccades. Cereb Cortex 14:56–72

    Article  PubMed  Google Scholar 

  • Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden-Day, Oakland, CA

  • Jensen O, Tesche CD (2002) Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 15:1395–1399

    Article  PubMed  Google Scholar 

  • Kahana MJ, Sekuler R, Caplan JB, Kirschen M, Madsen JR (1999) Human theta oscillations exhibit task dependence during virtual maze navigation. Nature 3999:781–784

    Article  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195

    Article  CAS  PubMed  Google Scholar 

  • Leuthold AC (2003) Subtraction of heart artifact from MEG data: the matched filter revisited. Soc Neurosci Abstr 863.15

    Google Scholar 

  • Lewis SM, Jerde TA, Tzagarakis C, Georgopoulos MA, Tsekos N, Amirikian B, Kim SG, Ugurbil K, Georgopoulos AP (2003) Cerebellar activation during copying geometrical shapes. J Neurophysiol 90:3874–3887

    PubMed  Google Scholar 

  • Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664

    CAS  PubMed  Google Scholar 

  • Lounasmaa OV, Hamalainen M, Hari R, Salmelin R (1996) Information processing in the human brain: magnetoencephalographic approach. Proc Natl Acad Sci USA 20:8809–8815

    Article  Google Scholar 

  • Miltner WH, Braun C, Arnold M, Witte H, Taub E (1999) Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397:434–436

    Article  CAS  PubMed  Google Scholar 

  • Mitra PP, Pesaran B (1999) Analysis of dynamic brain imaging data. Biophys J 76:691–708

    CAS  PubMed  Google Scholar 

  • Nikouline VV, Linkenkaer-Hansen K, Wikstrom H, Kesaniemi A, Antonova EV, Ilmoniemi RJ, Huttunen J (2000) Dynamics of mu-rhythm suppression caused by median nerve stimulation: a magnetoencephalographic study in human subjects. Neurosci Lett 294:163–166

    Article  CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Neuper C, Pichler-Zalaudek K, Edlinger G, Lopes da Silva FH (2000) Do brain oscillations of different frequencies indicate interaction between cortical areas in humans? Neurosci Lett 286:66–68

    Article  CAS  PubMed  Google Scholar 

  • Priestley MB (1981) Spectral analysis and time series. Academic, San Diego, CA

  • Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long-distance synchronization of human brain activity. Nature 397:430–433

    Article  CAS  PubMed  Google Scholar 

  • Sakuma K, Sekihara K, Hashimoto I (1999) Neural source estimation from a time-frequency component of somatic evoked high-frequency magnetic oscillations to posterior tibial nerve stimulation. Clin Neurophysiol 110:1585–1588

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Llinas RR (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68:649–742

    CAS  PubMed  Google Scholar 

  • Steriade M, Gloor P, Llinas RR, Lopes da Silva FH, Mesulam MM (1990) Report of IFCN committee on basic mechanisms. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 76:481–508

    Article  CAS  PubMed  Google Scholar 

  • Streit M, Ioannides AA, Liu L, Wolwer W, Dammers J, Gross J, Gaebel W, Muller-Gartner HW (1999) Neurophysiological correlates of the recognition of facial expressions of emotion as revealed by magnetoencephalography. Cogn Brain Res 7:481–491

    Article  CAS  Google Scholar 

  • Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A, Freund HJ (1998) Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys Rev Lett 81:3291–3294

    Article  CAS  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    Article  CAS  PubMed  Google Scholar 

  • Williamson SJ, Kaufman L (1981) Biomagnetism. J Magn Magn Mater 22:129–202

    Article  Google Scholar 

  • Yamagishi N, Callan DE, Goda N, Anderson SJ, Yoshida Y, Kawato M (2003) Attentional modulation of oscillatory activity in human visual cortex. Neuroimage 20:98–113

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the MIND Institute (Albuquerque, NM), the Department of Veterans Affairs, and the American Legion Brain Sciences Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos P. Georgopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leuthold, A.C., Langheim, F.J.P., Lewis, S.M. et al. Time series analysis of magnetoencephalographic data during copying. Exp Brain Res 164, 411–422 (2005). https://doi.org/10.1007/s00221-005-2259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-2259-0

Keywords

Navigation