Skip to main content
Log in

Neuroprotection induced by the adenosine A2A antagonist CSC in the 6-OHDA rat model of parkinsonism: effect on the activity of striatal output pathways

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In Parkinson’s disease (PD), the striatal dopamine depletion and the following overactivation of the indirect pathway of the basal ganglia leads to very early disinhibition of the subthalamic nucleus (STN) that may contribute to the progression of PD by glutamatergic overstimulation of the dopaminergic neurons in the substantia nigra. Adenosine A2A antagonism has been demonstrated to attenuate the overactivity of the striatopallidal pathway. To investigate whether neuroprotection exerted by the A2A antagonist 8-(3-chlorostyryl)caffeine (CSC) correlates with a diminution of the striatopallidal pathway activity, we have examined the changes in the mRNA encoding for enkephalin, dynorphin, and adenosine A2A receptors by in situ hybridization induced by subacute systemic pretreatment with CSC in rats with striatal 6-hydroxydopamine(6-OHDA) administration. Animals received CSC for 7 days until 30 min before 6-OHDA intrastriatal administration. Vehicle-treated group received a solution of dimethyl sulfoxide. CSC pretreatment partially attenuated the decrease in nigral tyrosine hydroxylase immunoreactivity induced by 6-OHDA, whereas no modification of the increase in preproenkephalin mRNA expression in the dorsolateral striatum was observed. The neuroprotective effect of the adenosine A2A antagonist CSC in striatal 6-OHDA-lesioned rats does not result from a normalization of the increase in striatal PPE mRNA expression in the DL striatum, suggesting that other different mechanisms may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexander SP, Reddington M (1989) The cellular localization of adenosine receptors in rat neostriatum. Neuroscience 28:645–651

    Article  CAS  PubMed  Google Scholar 

  • Alfinito PD, Wang SP, Manzino L, Rijhsinghani S, Zeevalk GP, Sonsolla PK (2003) Adenosinergic protection of dopaminergic and GABAergic neurons against inhibition through receptors located in the substantia nigra and striatum. J Neurosci 23:10982–10987

    CAS  PubMed  Google Scholar 

  • Aoyama S, Koga K, Mori A, Miyaji H, Sekine S, Kase H, Uchimura T, Kobayashi H, Kuwana Y (2002) Distribution of adenosine A2A receptor antagonist KW6002 and its effect on gene expression in the rat brain. Brain Res 953:119–125

    Google Scholar 

  • Aronin N, DiFiglia M, Graveland GA, Schwartz WJ, Wu JY (1984) Localization of immunoreactive enkephalin in GABA synthesizing neurons of the rat neostriatum. Brain Res 300:376–380

    CAS  PubMed  Google Scholar 

  • Aronin N, Chase K, DiFiglia M (1986) Glutamic acid decarboxylase and enkephalin immunoreactive axon terminals in the rat neostriatum synpase with striatonigral. Brain Res 365:151–158

    CAS  PubMed  Google Scholar 

  • Asselin MC, Soghomonian JJ, Cote PY, Parent A (1994) Striatal changes in preproenkephalin messenger RNA levels in parkinsonian monkeys. Neuroreport 5:2137–2140

    CAS  PubMed  Google Scholar 

  • Augood SJ (1999) Localization of adenosine A2A receptors in brain: therapeutic implications. Adv Neurol 80:105–109

    CAS  PubMed  Google Scholar 

  • Augood SJ, Emson PC, Mitchell IJ, Boyce S, Clarke CE, Crossman AR (1989) Cellular localisation of enkephalin gene expression in MPTP-treated cynomolgus monkeys. Brain Res Mol Brain Res 6:85–92

    CAS  PubMed  Google Scholar 

  • Augood SJ, Emson PC (1994) Adenosine A2A receptor mRNA is expressed by enkephalin cells but not somatostatin cells in rat striatum:a co-expression study. Mol Brain Res 22:104–210

    Article  Google Scholar 

  • Barraco RA, Martens KA, Parizon M, Normile HJ (1993) Adenosine A2A receptors in the nucleus accumbens mediate locomotor depression. Brain Res Bull 31:397–404

    Article  CAS  PubMed  Google Scholar 

  • Behan WMH, Stone TW (2002) Enhanced neuronal damage by co-administration of quinolinic acid and free radicals, and protection by adenosine A2A receptor antagonists. Br J Pharmacol 135:1435–1442

    Google Scholar 

  • Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesion of the subthalamic nucleus. Science 249:1436–1438

    CAS  PubMed  Google Scholar 

  • Blandini F, Nappi G, Grenamyre JT (2001) Subthalamic infusion of an NMDA antagonist prevents basal ganglia metabolic changes and nigral degeneration in a rodent model of Parkinson’s disease. Ann Neurol 49:525–529

    Google Scholar 

  • Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172

    CAS  PubMed  Google Scholar 

  • Bona E, Aden U, Guilland E, Fredholm BB, Hagberg H (1997) Neonatal cerebral hypoxiaischemia: the effect of adenosine receptor antagonists. Neuropharmacology 9:1327–1338

    Article  Google Scholar 

  • Bové J, Marin C, Bonastre M, Tolosa E (2002) Adenosine A2A antagonism reverses levodopa-induced motor alterations in hemiparkinsonian rats. Synapse 46:251–257

    PubMed  Google Scholar 

  • Boye SM, Grant RJ, Clarke PBS (2001) Disruption of dopaminergic transmission in nucleus accumbens core inhibits the locomotor stimulant effects of nicotine and d-amphetamine in rats. Neuropharmacology 40:792–805

    Google Scholar 

  • Breese GR, Taylor TD (1971) Depletion of brain noradrenaline and dopamine by 6-hydroxydopamine. Br J Pharmacol 42:88–99

    CAS  PubMed  Google Scholar 

  • Cadet JL, Zhu SM, Angulo JA (1992) Quantitative in situ hybridization evidence for differential regulation of proenkephalin and dopamine D2 receptor messenger RNA levels in rat striatum: effects of unilateral intrastriatal injections of 6-hydroxydopamine. Mol Brain Res 12:59–67

    CAS  Google Scholar 

  • Calon F, Birdi S, Rajput AH, Hornykiewicz O, Bédard PJ (2002) Increase of preproenkephalin mRNA levels in the putamen of Parkinson’s disease patients with levodopa-induced dyskinesias. J Neuropathol Exp Neurol 61:186–196

    CAS  PubMed  Google Scholar 

  • Carta AR, Pinna A, Cauli O, Morelli M (2002) Differential regulation of GAD67, enkephalin and dynorphin mRNAs by chronic-intermittent L-dopa and A2A receptor blockade plus l-dopa in dopamine-denervated rats. Synapse 44:166–174

    CAS  PubMed  Google Scholar 

  • Chen JF, Beilstein M, Xy YH, Turner TJ, Moratalla R, Stundaert DG, Aloyo VJ, Fink JS, Schwarzschild MA (2000) Selective attenuation of psychostimulant-induced behavioral responses in mice lacking A2A adenosine receptors. Neuroscience 97:195–204

    CAS  PubMed  Google Scholar 

  • Chen JF, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M, Sonsalla P, Castafnoli K, Castagnoli N Jr, Schwarzschild MA (2001) Neuroprotection by caffeine and A2A adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:16

    CAS  Google Scholar 

  • Chen JF, Steyn S, Staal R, Petzer JP, Xu K, Van der Schyf C, Castagnoli K, Sonsalla PK, Castagnoli N Jr, Schwarzschild MA (2002) 8-(3-Chlorostyryl)caffeine may attenuate MPTP neurotoxicity through dual actions of monoamine oxidase inhibition and A2A receptor antagonism. J Biol Chem 277:36040–36044

    CAS  PubMed  Google Scholar 

  • Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic–ischemic neuronal death. Annu Rev Neurosci 13:171–182

    CAS  PubMed  Google Scholar 

  • Corsi C, Melani A, Bianchi L, Pedata F (2000) Striatal A2A adenosine receptor antagonism differentially modifies striatal glutamate outflow in vivo in young and aged rats. Neuroreport 11:2591–2592

    CAS  PubMed  Google Scholar 

  • De Long MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    CAS  PubMed  Google Scholar 

  • Dianzani C, Brunelleschi S, Viano I, Fantozzi R (1994) Adenosine modulation of primed human neutrophils. Eur J Pharmacol 263:223–226

    CAS  PubMed  Google Scholar 

  • El Yacoubi M, Ledent C, Parmentier M, Ongini E, Costentin J, Vaugeois JM (2001) In vivo labeling of the adenosine A2A receptor in mouse brain using the selective antagonist [3H]SCH58261. Eur J Neurosci 14:1567–1570

    CAS  PubMed  Google Scholar 

  • Engber TM, Susel Z, Kuo S, Ge CR, Chase TN (1991) Levodopa replacement therapy alters enzyme activities in striatum and neuroppetide content in striatal output regions of 6-hydroxydopamine lesioned rats. Brain Res 552:113–118

    CAS  PubMed  Google Scholar 

  • Fiebich BL, Biber K, Lieb K, van Calker D, Berger M, Bauer J, Gebike-Haerter PJ (1996) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2A receptors. Glia 18:152–160

    CAS  PubMed  Google Scholar 

  • Fink JS, Weaver DR, Rivkees SA, Peterfreund RA, Pollack A, Adler EM, Reppert SM (1992) Molecular cloning of the rat A2A adenosine receptor. Selective co-expression with D-2 dopamine receptors in rat striatum. Mol Brain Res 14:186–195

    CAS  PubMed  Google Scholar 

  • Fredduzzi S, Moratalla R, Monopoli A, Cuellar B, Xu K, Ongini E, Impagnatiello F, Schwarzschild MA, Chen JF (2002) Persistent behavioral sensitization to chronic l-dopa requires A2A adenosine receptors. J Neurosci 22:1054–1062

    CAS  PubMed  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Sibley DR (1990) D1 and D2 dopamine receptor regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    CAS  PubMed  Google Scholar 

  • Grafe MR, Forno LS, Eng LF (1985) Immunocytochemical studies of substance P and Met-enkephalin in the basal ganglia and susbtantia nigra in Huntington’s, Parkinson’s and Alzheimer’s diseases. J Neuropathol Exp Neurol 44:47–59

    CAS  PubMed  Google Scholar 

  • Grondin R, Bédard PJ, Hadj Tahar A, Gregoire L, Mori A, Kase H (1999) Antiparkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology 52:1673–1677

    CAS  PubMed  Google Scholar 

  • Hauser KF, Foldes JK, Turbek CS (1999) Dynorphin A (1–13) neurotoxicity in vitro: opioid and non-opioid mechanisms in mouse spinal cord neurons. Exp Neurol 160:361–375

    CAS  PubMed  Google Scholar 

  • Herrero MT, Augood SJ, Hirsch EC, Javoy-Agid EC, Luquin MR, Agid Y, Obeso JA, Emson PC (1995) Effects of l-dopa on preproenkephalin and preprotachykinin gene expression in the MPTP-treated monkey striatum. Neuroscience 68:1189–1198

    CAS  PubMed  Google Scholar 

  • Hindley S, Herman MAR, Rathbone MP (1994) Stimulation of astrogliosis in vivo by extracellular ADP or an adenosine A2 receptor agonist. J Neurosci Res 38:399–406

    CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S, Damier P, Brugg B, Faucheux BA, Michel PP, Ruberg M, Muriel MP, Mouatt-Prigent A, Agid Y (1999) Glial cell participation in the degeneration of dopaminergic neurons in Parkinson’s disease. Adv Neurol 80:9–18

    CAS  PubMed  Google Scholar 

  • Ikeda K, Kurokawa M, Aoyama S, Kuwana Y (2002) Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson’s disease. J Neurochem 80:262–270

    Article  CAS  PubMed  Google Scholar 

  • Ikemoto S (2002) Ventral striatum anatomy of locomotor activity induced by cocaine, d-amphetamine, dopamine and D-1/D-2 agonists. Neuroscience 113:939–955

    Article  CAS  PubMed  Google Scholar 

  • Ikemoto S, Witkin BM (2003) Locomotor inhibition induced by procaine injections into the nucleus accumbens core, but not the medial ventral striatum: implication for cocaine-induced locomotion. Synapse 47:117–122

    Article  CAS  PubMed  Google Scholar 

  • Jarvis MF, Williams M (1989) Direct autoradiographic localization of adenosine A2A receptors in the rat brain using the A2A selective agonist 3H-CGS21680. Eur J Pharmacol 168:243–246

    Article  CAS  PubMed  Google Scholar 

  • Jian HK, McGinty JF, Hong, JS (1990) Differential modulation of striatonigral dynorphin and enkephalin by dopamine receptor subtypes. Brain Res 507:57–64

    Article  PubMed  Google Scholar 

  • Johansson B, Georgiev V, Fredholm BB (1997) Distribution and postnatal ontogeny of adenosine A2A receptors in rat brain: comparison with dopamine receptors. Neuroscience 80:1187–1207

    Article  CAS  PubMed  Google Scholar 

  • Jolkkonen J, Jenner P, Marsden CD (1995) l-Dopa reverses altered gene expression of substance P but not enkephalin in the caudateputamen of common marmosets treated with MPTP. Mol Brain Res 32:297–307

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Smith RA, Stone TW (1998a) Protection against hippocampal kainate excitotoxicity by intracerebral administration of an adenosine A2A receptor antagonist. Brain Res 800:328–335

    Google Scholar 

  • Jones PA, Smith RA, Stone W (1998b) Protection against kainate-induced excitotoxicity by adenosine A2A receptor agonists and antagonists. Neuroscience 85:229–237

    Article  CAS  PubMed  Google Scholar 

  • Kaelin-Lang A, Liniger P, Probst A, Lauterburg T, Burgunder JM (2000) Adenosine A2A receptor gene expression in the normal striatum and after 6-OH-dopamine lesion. J Neural Transm 107:851–859

    Article  CAS  PubMed  Google Scholar 

  • Kanda T, Jackson MJ, Pearce RKB., Nakamura J, Kase H, Kuwana Y, Jenner P (1998) Adenosine A2A antagonist:a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 43:507–513

    Google Scholar 

  • Kanda T, Jackson MJ, Smith LA, Pearce RKB, Nakamura J, Kase H, Kuwana Y, Jenner P (2000) Combined use of adenosine A2A antagonist, KW-6002 with l-dopa or with selective D-1 or D-2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol 162:321–327

    Article  CAS  PubMed  Google Scholar 

  • Karoum F, Chrapusta SJ, Egan MF, Wyatt RJ (1993) Absence of 6-hydroxydopamine in the rat brain after treatment with stimulants and other dopaminergic agents: a mass fragmentographic study. J Neurochem 61:1369–1375

    CAS  PubMed  Google Scholar 

  • Kirik D, Rosenbland C, Björklund A (1998) Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol 152:259–277

    Article  CAS  PubMed  Google Scholar 

  • Kita H, Kitai ST (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260:435–452

    Google Scholar 

  • Koga K, Kurokawa M, Ochi M, Nakamura J, Kuwana Y (2000) Adenosine A2A receptor antagonist KF17837 and KW6002 potentiate rotation induced by dopaminergic drugs in hemiparkinsonian rats. Eur J Pharmacol 408:249–255

    Article  CAS  PubMed  Google Scholar 

  • Le Moine C, Bloch B (1995) D-1 and D-2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D-1 and D-2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J Comp Neurol 355:418–426

    Article  CAS  PubMed  Google Scholar 

  • Le Moine C, Svenningsson P, Fredholm BB, Bloch B (1997) Dopamine-adenosine interactions in the striatum and the globus pallidus: inhibition of striatopallidal neurons through either D-1 or A2A receptor enhances D-1 receptor-mediated effects on c-fos expression. J Neurosci 17:8038–8048

    CAS  PubMed  Google Scholar 

  • Levy R, Hazrati LN, Herrero MT, Vila M, Hassani OK, Mouroux M, Ruberg M, Asensi H, Agid Y, Feger J, Obeso JA, Parent A, Hirsch EC (1997) Re-evaluation of the functional anatomy of the basal ganglia in normal and parkinsonian states. Neuroscience 76:335–343

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Mir MI, Probst A, Palacios JM (1991) Adenosine A2A receptors:selective localization in the human basal ganglia and alterations with disease. Neuroscience 42:697–706

    Article  CAS  PubMed  Google Scholar 

  • Mayfield RD, Larson G, Orona RA, Zahniser NR (1996) Opposing actions of adenosine A2A and dopamine D2 receptor activation on GABA release in the basal ganglia: evidence for and A2A /D2 receptor interaction in globus pallidus. Synapse 22:132–138

    Article  CAS  PubMed  Google Scholar 

  • McIntosh TK, Fernyak S, Yamakami I, Faden AI (1994) Central and systemic kappa-opioid agonists exacerbate neurobehavioral response to brain injury in rats. Am J Physiol 267:R665–R672

    Google Scholar 

  • Melani A, Pantoni L, Bordoni F, Gianfriddo M, Bianchi K, Vannucchi MG, Bertorelli R, Monopoli A, Pedata F (2003) The selective A2A receptor antagonist SCH58261 reduces striatal transmitter outflow, turning behavior and ischemic brain damage induced by permanent focal ischemia in the rat. Brain Res 959:243–250

    Article  CAS  PubMed  Google Scholar 

  • Michael PP, Marien M, Ruberg M, Colpaert F, Agid Y (1999) Adenosine prevents the death of mesencephalic dopaminergic neurons by a mechanism that involves astrocytes. J Neurochem 72:2074–2082

    Article  PubMed  Google Scholar 

  • Miller WC, DeLong MR (1987) Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism. In: Carpenter MB, Jayaraman A (eds) The basal ganglia II. Plenum, New York, pp 415–427

    Google Scholar 

  • Mitchell IJ, Clarke CE, Boyce S, Robertson RG, Peggs D, Sambrook MA, Crossman AR (1989) Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 32:123–226

    Google Scholar 

  • Monopoli A, Lozza G, Forlani A, Mattaveli A, Ongini E (1998) Blockade of adenosine A2A receptors by SCH58261 results in neuroprotective effects in cerebral ischemia in rats. Neuroreport 9:3955–3959

    CAS  PubMed  Google Scholar 

  • Moreau JL, Huber G (1999) Central adenosine A2A receptors. An overview. Brain Res 31:65–82

    Google Scholar 

  • Morelli M, Fenu S, Pinna A, Di Chiara G (1994) Adenosine A2A receptors interact negatively with dopamine D1 and D2 receptors in unilaterally 6-hydroxydopamine-lesioned rats. Eur J Pharmacol 251:21–25

    Article  CAS  PubMed  Google Scholar 

  • Morissette M, Coulet M. Soghomonian JJ, Blanchet PJ, Calon F, Bédard PJ, DiPaolo T (1997) Preproenkephalin mRNA expression in the caudate–putamen of MPTP monkeys after chronic treatment with the D-2 agonist U91356A in continuous or intermittent mode of administration: comparison with l-dopa therapy. Mol Brain Res 49:55–62

    Google Scholar 

  • Nisbet AP, Foster OJF, Kingsbury A, Eve DJ, Daniel SE, Marsden CD, Lees AJ (1995) Preproenkephalin and preprotachykinin messenger RNA expression in normal human basal ganglia and in Parkinson’s disease. Neuroscience 66:361–376

    Article  CAS  PubMed  Google Scholar 

  • Nisenbaum LK, Kitai ST, Crowley WR, Gerfen CR (1994) Temporal dissociation between changes in striatal enkephalin and substance P messenger RNAs following striatal dopamine depletion. Neuroscience 60:927–937

    Article  CAS  PubMed  Google Scholar 

  • Ochi M, Koga K, Kurokawa M, Kase H, Nakamura J, Kuwana Y (2000) Systemic administration of adenosine A2A receptor antagonist reverses increased GABA release in the globus pallidus of unilateral 6-hydroxydopamine-lesioned rats: a microdialysis study. Neuroscience 100:53–62

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Mizuno K, Kaneko S (1996) Adenosine A1 and A2 receptor modulate extracellular dopamine levels in rat striatum. Neurosci Lett 212:53–56

    Article  CAS  PubMed  Google Scholar 

  • Ongini E, Fredholm BB (1996) Pharmacology of adenosine A2A receptors. Trends Pharmacol Sci 17:364–372

    Google Scholar 

  • Parent A, Sato F, Wu Y, Gauthier J, Levesque M, Parent M (2000) Organization of the basal ganglia: the importance of axonal collateralization. Trends Neurosci 23:S20–S27

    Article  CAS  PubMed  Google Scholar 

  • Paul ML, Graybiel AM, David JC, Robertson JA (1992) D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson’s disease. J Neurosci 12:3729–3742

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Piallat B, Benazzouz A, Benabid AL (1996) Subthalamic nucleus lesion in rats prevents dopaminergic nigral neurons degeneration after striatal 6-OHDA injection: behavioural and immunohistochemical studies. Eur J Neurosci 8:1408–1414

    CAS  PubMed  Google Scholar 

  • Piallat B, Benazzouz A, Benabid AL (1999) Neuroprotective effect of chronic inactivation of the subthalamic nucleus in a rat model of Parkinson’s disease. J Neural Transm Suppl 55:71–77

    CAS  PubMed  Google Scholar 

  • Pinna A, DiChiara G, Wardas J, Morelli M (1996) Blockade of A2A adenosine receptors positively modulates turning behaviour and c-Fos expression induced by D-1 agonists in dopamine denervated rats. Eur J Neurosci 8:1176–1181

    CAS  PubMed  Google Scholar 

  • Pinna A, Fenu S, Morelli M (2001) Motor stimulant effects of the adenosine A2A receptor antagonist SCH58261 do not develop tolerance after repeated treatments in 6-hydroxydopamine-lesioned rats. Synapse 39:233–238

    Article  CAS  Google Scholar 

  • Pinna A, Corsi C, Carta AR, Valentini V, Pedata F, Morelli M (2002) Modification of adenosine extracellular levels and adenosine A2A receptor mRNA by dopamine denervation. Eur J Pharmacol 446:75–82

    Article  CAS  PubMed  Google Scholar 

  • Pollack AE, Fink JS (1996) Synergistic interaction between an adenosine antagonist and a dopamine D-1 agonist on rotational behaviour and striatal c-fos induction in 6-hydroxydopamine-lesioned rats. Brain Res 743:124–130

    Article  CAS  PubMed  Google Scholar 

  • Pollack AE, Harrison MB, Wooten FG, Fink SJ (1993) Differential localization of A2A adenosine receptor mRNA with D-1 and D-2 dopamine receptor mRNA in striatal output pathways following a selective lesion of striatonigral neurons. Brain Res 631:161–166

    Article  CAS  PubMed  Google Scholar 

  • Popoli P, Betto P, Reggio R, Ricciarello G (1995) Adenosine A2A receptor stimulation enhances striatal extracellular glutamate levels in rats. Eur J Pharmacol 287:215–217

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D (1995) Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 67:631–647

    Article  CAS  PubMed  Google Scholar 

  • Rathbone MP, Middlemiss PJ, Gysbers JW, Andrews C, Herman MAR, Reed JK, Ciccarelli R, Di Iorio P, Caciagli F (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59:663–690

    Article  CAS  PubMed  Google Scholar 

  • Robertson GS, Robertson HA (1986) Synergistic effects of a D1 and D2 dopamine agonists on turning behaviour in rats. Brain Res 384:387–390

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MC, Obeso JA, Olanow CW (1998) Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: a target for neuroprotection. Ann Neurol 44:S175–S188

    Google Scholar 

  • Rosin DL, Robeva A, Woodard RL, Guyenet PG, Linden J (1998) Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol 401:163–186

    Article  CAS  PubMed  Google Scholar 

  • Salonen T, Haapalinna A, Heinonen E, Suhonen J, Hervonen A (1996) Monoamino oxidase inhibitor selegiline protects young and aged rat peripheral sympathetic neurons against 6-hydroxydopamine-induced neurotoxicity. Acta Neuropathol 91:466–474

    Article  CAS  PubMed  Google Scholar 

  • Schiffmann SN, Jacobs O, Vanderhaeghen JJ (1991) Striatal restricted adenosine A2A receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J Neurochem 57:1062–1067

    CAS  PubMed  Google Scholar 

  • Scholz-Pedretti K, Pfeilschifter J, Kaskin M (2001) Potentiation of cytokine induction of groups IIA phospholipase A2 in rat mesangial cells by ATP and adenosine via the A2A adenosine receptor. Br J Pharmacol 132:37–46

    Google Scholar 

  • Schwarzschild MA, Chen JF, Ascherio A (2002) Caffeinated clues and the promise of adenosine A2A antagonists in PD. Neurology 58:1154–1160

    CAS  PubMed  Google Scholar 

  • Sebastiao AM, Ribeiro JA (1996) Adenosine A2 receptor-mediated excitatory actions of the nervous system. Prog Neurobiol 48:167–189

    Article  CAS  PubMed  Google Scholar 

  • Seeman P, Tallerico T (2003) Link between dopamine D-1 and D-2 receptors in rat and human striatal tissues. Synapse 47:250–254

    Article  CAS  PubMed  Google Scholar 

  • Siegel GJ, Chauhan NB (2000) Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Rev 33:199–227

    Google Scholar 

  • Simpson RE, O’Regan MH, Perkins LM, Phillis JW (1992) Excitatory transmitter amino acid release from the ischaemic rat cerebral cortex: effects of adenosine receptor agonists and antagonists. J Neurochem 58:1683–1690

    CAS  PubMed  Google Scholar 

  • Sullivan GW, Linden J, Buster BL, Scheld WM (1999) Neutrophil A2A adenosine receptor inhibits inflammation in a rat model of meningitis: synergy with the type IV phosphodiesterase inhibitor, rolipram. J Infect Dis 180:1550–1560

    Article  CAS  PubMed  Google Scholar 

  • Svenningsson P, Nomikos GG, Fredholm BB (1995) Biphasic changes in locomotor behavior and in expression of mRNA for NGFI-A and NGFI-B in rat striatum following acute caffeine administration. J Neurosci 5:7612–7624

    Google Scholar 

  • Svenningsson P, Le Moine C, Fisone G, Fredholm BB (1999) Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 59:355–396

    Article  CAS  PubMed  Google Scholar 

  • Tan-No K, Cebers G, Yakovleva T, Goh BH, Gileva I, Reznikov K, Aguilar-Santelises M, Hauser KF, Terenius L, Bakalkin G (2001) Cytotoxic effects of dynorphins through nonopioid intracellular mechanisms. Exp Cell Res 269:54–63

    Article  CAS  PubMed  Google Scholar 

  • Tebano MT, Pintor A, Frank C, Domenici MR, Martire A, Pepponi R, Potenza RL, Grieco R, Popoli P (2004) Adenosine A2A receptor blockade differentially influences excitotoxic mechanisms at pre- and postsynaptic sites in the rat striatum. J Neurosci Res 77:100–107

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Perier C, Feger J, Yelnik J, Faucheux B, Ruberg M, Raisman-Vozari R, Agid, Hirsch EC (2000) Evolution of changes in neuronal activity in the subthalamic nucleus of rats with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological measurements. Eur J Neurosci 12:337–344

    Article  CAS  PubMed  Google Scholar 

  • Von Lubitz DK, Lin RC, Jacobson KA (1995) Cerebral ischemia in gerbils: effects of acute and chronic treatment with adenosine A2A receptor agonist and antagonist. Eur J Pharmacol 287:295–302

    Article  CAS  PubMed  Google Scholar 

  • Voorn P, Roest G, Groenewegen HJ (1987) Increase of enkephalin and decrease of substance P immunoreactivity in the dorsal and ventral striatum of the rat midbrain 6-hydroxydopamine lesions. Brain Res 412:391–396

    Google Scholar 

  • Winkler C, Kirik D, Björklund A, Cenci MA (2002) l-Dopa-induced dyskinesia in the striatal 6-hydroxydopamine model of Parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10:165–186

    Article  PubMed  Google Scholar 

  • Xu K, Xu YH, Chen F, Schwarzschild MA (2002) Caffeine’s neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity shows no tolerance to chronic caffeine administration in mice. Neurosci Lett 322:13–16

    Article  CAS  PubMed  Google Scholar 

  • Young WS, Bonner TI, Brann MR (1986) Mesencephalic dopamine neurons regulate the expression of neuropeptide messenger RNAs in the rat forebrain. Proc Natl Acad Sci USA 83:9827–9831

    CAS  PubMed  Google Scholar 

  • Yung KKL, Smith AD, Levey AI, Bolam JP (1996) Synaptic connections between spiny neurons of the direct and indirect pathways in the neostriatum of the rat: evidence from dopamine receptor and neuropeptide immunostaining. Eur J Neurosci 8:861–869

    CAS  PubMed  Google Scholar 

  • Zeng BY, Jolkkonen J, Jenner P, Marsden CD (1995) Chronic l-dopa treatment differentially regulates gene expression glutamate decarboxylase, preproenkephalin and preprotachykinin in striatum of 6-hydroxydopamine-lesioned rat. Neuroscience 66:19–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Ministerio de Sanidad y Consumo (FIS 01/1499) and from the Ministerio de Ciencia y Tecnología (SAF2000–0212) of Spanish Government. J.B. and J.S. were supported by a grant from the Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). The research groups are a part of the Spanish network for the research of neurological diseases (CIEN, Centro de Investigación de Enfermedades Neurológicas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concepció Marin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bové, J., Serrats, J., Mengod, G. et al. Neuroprotection induced by the adenosine A2A antagonist CSC in the 6-OHDA rat model of parkinsonism: effect on the activity of striatal output pathways. Exp Brain Res 165, 362–374 (2005). https://doi.org/10.1007/s00221-005-2302-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-2302-1

Keywords

Navigation