Skip to main content
Log in

Saccadic lateropulsion in Wallenberg syndrome: a window to access cerebellar control of saccades?

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Saccadic lateropulsion is characterized by an undershoot of contralaterally directed saccades, an overshoot of ipsilaterally directed saccades and an ipsilateral deviation of vertical saccades. In Wallenberg syndrome, it is thought to result from altered signals in the olivo-cerebellar pathway to the oculomotor cerebellar network. In the current study we aimed to determine whether saccadic lateropulsion results from a cerebellar impairment of motor related signals or visuo-spatial related signals. We studied the trajectory, the accuracy, the direction and the amplitude of a variety of vertical and oblique saccades produced by five patients and nine control subjects. Some results are consistent with previous data suggesting altered motor related signals. Indeed, the horizontal error of contralesional saccades in patients increased with the desired horizontal saccade size. Furthermore, the initial directional error measured during the saccadic acceleration phase was smaller than the global directional error, suggesting that the eye trajectory curved progressively. However, some other results suggest that the processes that specify the horizontal spatial goal of the saccades might be impaired in the patients. Indeed, the horizontal error of ipsilesional saccades in patients did not change significantly with the desired horizontal saccade size. In addition, when comparing saccades with similar intended direction, it was found that the directional error was inversely related to the vertical saccade amplitude. Thus we conclude that the cerebellum might be involved both in controlling the motor execution of saccades and in determining the visuo-spatial information about their goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Indeed, saccade direction depends on the ratio of vertical saccade components divided by the horizontal saccade component (V/H). A change in horizontal gain by a factor C results in a saccade direction V/(C × H) = 1/C × V/H. Thus the error in saccade direction due to the horizontal gain change C depends only on the ratio V/H (i.e. the direction of the desired saccade) and does not change with saccade amplitude.

Abbreviations

cFN:

Caudal fastigial nucleus

References

  • Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P (1999) Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci 19:10931–10939

    PubMed  CAS  Google Scholar 

  • Benedetti F, Montarolo PG, Strata P, Tempia F (1983) Inferior olive inactivation decreases the excitability of the intracerebellar and lateral vestibular nuclei in the rat. J Physiol 340:195–208

    PubMed  CAS  Google Scholar 

  • Bergeron A, Guitton D (2001) The superior colliculus and its control of fixation behavior via projections to brainstem omnipause neurons. Prog Brain Res 134:97–107

    PubMed  CAS  Google Scholar 

  • Botzel K, Rottach K, Buttner U (1993) Normal and pathological saccadic dysmetria. Brain 116(Pt 2):337–353

    Article  PubMed  Google Scholar 

  • Buttner U, Straube A, Spuler A (1994) Saccadic dysmetria and “intact” smooth pursuit eye movements after bilateral deep cerebellar nuclei lesions. J Neurol Neurosurg Psychiatry 57:832–834

    Article  PubMed  CAS  Google Scholar 

  • Carpenter MB, Cowie RJ (1985) Connections and oculomotor projections of the superior vestibular nucleus and cell group ‘y’. Brain Res 336:265–287

    Article  PubMed  CAS  Google Scholar 

  • Goffart L, Chen LL, Sparks DL (2004) Deficits in saccades and fixation during muscimol inactivation of the caudal fastigial nucleus in the rhesus monkey. J Neurophysiol 92:3351–3367

    Article  PubMed  Google Scholar 

  • Goffart L, Pelisson D (1994) Cerebellar contribution to the spatial encoding of orienting gaze shifts in the head-free cat. J Neurophysiol 72:2547–2550

    PubMed  CAS  Google Scholar 

  • Goffart L, Pelisson D (1998) Orienting gaze shifts during muscimol inactivation of caudal fastigial nucleus in the cat. I. Gaze dysmetria. J Neurophysiol 79:1942–1958

    PubMed  CAS  Google Scholar 

  • Goffart L, Pelisson D, Guillaume A (1998) Orienting gaze shifts during muscimol inactivation of caudal fastigial nucleus in the cat. II. Dynamics and eye-head coupling. J Neurophysiol 79:1959–1976

    PubMed  CAS  Google Scholar 

  • Helmchen C, Straube A, Buttner U (1994) Saccadic lateropulsion in Wallenberg’s syndrome may be caused by a functional lesion of the fastigial nucleus. J Neurol 241:421–426

    Article  PubMed  CAS  Google Scholar 

  • Hornsten G (1974a) Wallenberg’s syndrome. I. General symptomatology, with special reference to visual disturbances and imbalance. Acta Neurol Scand 50:434–446

    Article  CAS  Google Scholar 

  • Hornsten G (1974b) Wallenberg’s syndrome. II. Oculomotor and oculostatic disturbances. Acta Neurol Scand 50:447–468

    Article  CAS  Google Scholar 

  • Iwamoto Y, Yoshida K (2002) Saccadic dysmetria following inactivation of the primate fastigial oculomotor region. Neurosci Lett 325:211–215

    Article  PubMed  CAS  Google Scholar 

  • Kirkham TH, Guitton D, Gans M (1981) Task dependent variations of ocular lateropulsion in Wallenberg’s syndrome. Can J Neurol Sci 8:21–26

    PubMed  CAS  Google Scholar 

  • Kommerell G, Hoyt WF (1973) Lateropulsion of saccadic eye movements. Electro-oculographic studies in a patient with Wallenberg’s syndrome. Arch Neurol 28:313–318

    PubMed  CAS  Google Scholar 

  • Leigh RJ, Zee DS (1999) The neurology of eye movements. F.A. Davis Company, Philadelphia

    Google Scholar 

  • Meyer KT, Baloh RW, Krohel GB, Hepler RS (1980) Ocular lateropulsion. A sign of lateral medullary disease. Arch Ophthalmol 98:1614–1616

    PubMed  CAS  Google Scholar 

  • Milandre L, Lucchini P, Khalil R (1995) Lateral bulbar infarctions. Distribution, etiology and prognosis in 40 cases diagnosed by MRI. Rev Neurol (Paris) 151:714–721

    CAS  Google Scholar 

  • Morrow MJ, Sharpe JA (1988) Torsional nystagmus in the lateral medullary syndrome. Ann Neurol 24:390–398

    Article  PubMed  CAS  Google Scholar 

  • Noda H, Sugita S, Ikeda Y (1990) Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 302:330–348

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka K, Noda H (1990) Direction-selective saccadic-burst neurons in the fastigial oculomotor region of the macaque. Exp Brain Res 81:659–662

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka K, Noda H (1991) The effect of microstimulation of the oculomotor vermis on discharges of fastigial neurons and visually-directed saccades in macaques. Neurosci Res 10:290–295

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka K, Sato H, Noda H (1994) Saccadic burst neurons in the fastigial nucleus are not involved in compensating for orbital nonlinearities. J Neurophysiol 71:1976–1980

    PubMed  CAS  Google Scholar 

  • Optican LM, Robinson DA (1980) Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol 44:1058–1076

    PubMed  CAS  Google Scholar 

  • Pelisson D, Goffart L, Guillaume A (2003) Control of saccadic eye movements and combined eye/head shifts by the medio-posterior cerebellum. Elsevier, Amsterdam

    Google Scholar 

  • Quaia C, Lefevre P, Optican LM (1999) Model of the control of saccades by superior colliculus and cerebellum. J Neurophysiol 82:999–1018

    PubMed  CAS  Google Scholar 

  • Ranalli PJ, Sharpe JA (1986) Contrapulsion of saccades and ipsilateral ataxia: a unilateral disorder of the rostral cerebellum. Ann Neurol 20:311–316

    Article  PubMed  CAS  Google Scholar 

  • Ritchie L (1976) Effects of cerebellar lesions on saccadic eye movements. J Neurophysiol 39:1246–1256

    PubMed  CAS  Google Scholar 

  • Robinson DA (1981) The use of control systems analysis in the neurophysiology of eye movements. Annu Rev Neurosci 4:463–503

    Article  PubMed  CAS  Google Scholar 

  • Robinson FR, Fuchs AF, Noto CT (2002) Cerebellar influences on saccade plasticity. Ann N Y Acad Sci 956:155–163

    Article  PubMed  CAS  Google Scholar 

  • Robinson FR, Straube A, Fuchs AF (1993) Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J Neurophysiol 70:1741–1758

    PubMed  CAS  Google Scholar 

  • Scudder CA, McGee DM (2003) Adaptive modification of saccade size produces correlated changes in the discharges of fastigial nucleus neurons. J Neurophysiol 90:1011–1026

    Article  PubMed  Google Scholar 

  • Solomon D, Galetta SL, Liu GT (1995) Possible mechanisms for horizontal gaze deviation and lateropulsion in the lateral medullary syndrome. J Neuroophthalmol 15:26–30

    PubMed  CAS  Google Scholar 

  • Sparks DL (1999) Conceptual issues related to the role of the superior colliculus in the control of gaze. Curr Opin Neurobiol 9:698–707

    Article  PubMed  CAS  Google Scholar 

  • Straube A, Buttner U (1994) Pathophysiology of saccadic contrapulsion in unilateral rostral cerebellar lesions. Neuroophthalmology 14:3–7

    Article  Google Scholar 

  • Straube A, Helmchen C, Robinson F, Fuchs A, Buttner U (1994) Saccadic dysmetria is similar in patients with a lateral medullary lesion and in monkeys with a lesion of the deep cerebellar nucleus. J Vestib Res 4:327–333

    PubMed  CAS  Google Scholar 

  • Takagi M, Zee DS, Tamargo RJ (1998) Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol 80:1911–1931

    PubMed  CAS  Google Scholar 

  • Thier P, Dicke PW, Haas R, Barash S (2000) Encoding of movement time by populations of cerebellar Purkinje cells. Nature 405:72–76

    Article  PubMed  CAS  Google Scholar 

  • Tilikete C, Hermier M, Pelisson D, Vighetto A (2002) Saccadic lateropulsion and upbeat nystagmus: disorders of caudal medulla. Ann Neurol 52:658–662

    Article  PubMed  Google Scholar 

  • Vilis T, Hore J (1981) Characteristics of saccadic dysmetria in monkeys during reversible lesions of medial cerebellar nuclei. J Neurophysiol 46:828–838

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by “Projet de Recherche Clinique des Hospices Civils de Lyon” Grant n° HCL/P/99 201. We thank Mrs Chloe Hutton for English corrections of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Tilikete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilikete, C., Koene, A., Nighoghossian, N. et al. Saccadic lateropulsion in Wallenberg syndrome: a window to access cerebellar control of saccades?. Exp Brain Res 174, 555–565 (2006). https://doi.org/10.1007/s00221-006-0495-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0495-6

Keywords

Navigation