Skip to main content
Log in

Changes in somatosensory-evoked potentials and high-frequency oscillations after paired-associative stimulation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Paired-associative stimulation (PAS), combining electrical median nerve stimulation with transcranial magnetic stimulation (TMS) with a variable delay, causes long-term potentiation or depression (LTP/LTD)-like cortical plasticity. In the present study, we examined how PAS over the motor cortex affected a distant site, the somatosensory cortex. Furthermore, the influences of PAS on high-frequency oscillations (HFOs) were investigated to clarify the origin of HFOs. Interstimulus intervals between median nerve stimulation and TMS were 25 ms (PAS25) and 10 ms (PAS10). PAS was performed over the motor and somatosensory cortices. SEPs following median nerve stimulation were recorded before and after PAS. HFOs were isolated by 400–800 Hz band-pass filtering. PAS25 over the motor cortex increased the N20–P25 and P25–N33 amplitudes and the HFOs significantly. The enhancement of the P25–N33 amplitude and the late HFOs lasted more than 60 min. After PAS10 over the motor cortex, the N20–P25 and P25–N33 amplitudes decreased for 40 min, and the HFOs decreased for 60 min. Frontal SEPs were not affected after PAS over the motor cortex. PAS25/10 over the somatosensory cortex did not affect SEPs and HFOs. PAS25/10 over the motor cortex caused the LTP/LTD-like phenomena in a distant site, the somatosensory cortex. The PAS paradigms over the motor cortex can modify both the neural generators of SEPs and HFOs. HFOs may reflect the activation of GABAergic inhibitory interneurons regulating pyramidal neurons in the somatosensory cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allison T, McCarthy G, Wood CC, Williamson PD, Spencer DD (1989) Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. J Neurophysiol 62:711–722

    PubMed  CAS  Google Scholar 

  • Curio G (2000) Linking 600-Hz “spikelike” EEG/MEG wavelets (“sigma-bursts”) to cellular substrates: concepts and caveats. J Clin Neurophysiol 17:377–396

    Article  PubMed  CAS  Google Scholar 

  • Curio G, Mackert BM, Burghoff M, Koetitz R, Abraham-Fuchs K, Harer W (1994) Localization of evoked neuromagnetic 600 Hz activity in the cerebral somatosensory system. Electroencephalogr Clin Neurophysiol 91:483–487

    Article  PubMed  CAS  Google Scholar 

  • Curio G, Mackert BM, Burghoff M, Neumann J, Nolte G, Scherg M, Marx P (1997) Somatotopic source arrangement of 600 Hz oscillatory magnetic fields at the human primary somatosensory hand cortex. Neurosci Lett 234:131–134

    Article  PubMed  CAS  Google Scholar 

  • Eisen A, Roberts K, Low M, Hoirch M, Lawrence P (1984) Questions regarding the sequential neural generator theory of the somatosensory evoked potential raised by digital filtering. Electroencephalogr Clin Neurophysiol 59:388–395

    Article  PubMed  CAS  Google Scholar 

  • Enomoto H, Ugawa Y, Hanajima R, Yuasa K, Mochizuki H, Terao Y, Shiio Y, Furubayashi T, Iwata NK, Kanazawa I (2001) Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex. Clin Neurophysiol 112:2154–2158

    Article  PubMed  CAS  Google Scholar 

  • Gobbele R, Buchner H, Curio G (1998) High-frequency (600 Hz) SEP activities originating in the subcortical and cortical human somatosensory system. Electroencephalogr Clin Neurophysiol 108:182–189

    Article  PubMed  CAS  Google Scholar 

  • Goldring S, Aras E, Weber PC (1970) Comparative study of sensory input to motor cortex in animals and man. Electroencephalogr Clin Neurophysiol 29:537–550

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto I, Mashiko T, Imada T (1996) Somatic evoked high-frequency magnetic oscillations reflect activity of inhibitory interneurons in the human somatosensory cortex. Electroencephalogr Clin Neurophysiol 100:189–203

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto I, Kimura T, Fukushima T, Iguchi Y, Saito Y, Terasaki O, Sakuma K (1999) Reciprocal modulation of somatosensory evoked N20m primary response and high-frequency oscillations by interference stimulation. Clin Neurophysiol 110:1445–1451

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa S, Matsunaga K, Nakanishi R, Kawahira K, Murayama N, Tsuji S, Huang YZ, Rothwell JC (2007) Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials. Clin Neurophysiol 118:1033–1043

    Article  PubMed  Google Scholar 

  • Jones MS, Barth DS (2002) Effects of bicuculline methiodide on fast (>200 Hz) electrical oscillations in rat somatosensory cortex. J Neurophysiol 88:1016–1025

    PubMed  CAS  Google Scholar 

  • Klostermann F, Gobbele R, Buchner H, Curio G (2002) Intrathalamic non-propagating generators of high-frequency (1000 Hz) somatosensory evoked potential (SEP) bursts recorded subcortically in man. Clin Neurophysiol 113:1001–1005

    Article  PubMed  Google Scholar 

  • Kulik A, Vida I, Lujan R, Haas CA, Lopez-Bendito G, Shigemoto R, Frotscher M (2003) Subcellular localization of metabotropic GABA(B) receptor subunits GABA(B1a/b) and GABA(B2) in the rat hippocampus. J Neurosci 23:11026–11035

    PubMed  CAS  Google Scholar 

  • Mochizuki H, Ugawa Y, Machii K, Terao Y, Hanajima R, Furubayashi T, Uesugi H, Kanazawa I (1999) Somatosensory evoked high-frequency oscillation in Parkinson’s disease and myoclonus epilepsy. Clin Neurophysiol 110:185–191

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki H, Machii K, Terao Y, Furubayashi T, Hanajima R, Enomoto H, Uesugi H, Shiio Y, Kamakura K, Kanazawa I, Ugawa Y (2003) Recovery function of and effects of hyperventilation on somatosensory evoked high-frequency oscillation in Parkinson’s disease and myoclonus epilepsy. Neurosci Res 46:485–492

    Article  PubMed  Google Scholar 

  • Noel P, Ozaki I, Desmedt JE (1996) Origin of N18 and P14 far-fields of median nerve somatosensory evoked potentials studied in patients with a brain-stem lesion. Electroencephalogr Clin Neurophysiol 98:167–170

    Article  PubMed  CAS  Google Scholar 

  • Nuwer MR, Aminoff M, Desmedt J, Eisen AA, Goodin D, Matsuoka S, Mauguiere F, Shibasaki H, Sutherling W, Vibert JF (1994) IFCN recommended standards for short latency somatosensory evoked potentials. Report of an IFCN committee. International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol 91:6–11

    Article  PubMed  CAS  Google Scholar 

  • Ogawa A, Ukai S, Shinosaki K, Yamamoto M, Kawaguchi S, Ishii R, Takeda M (2004) Slow repetitive transcranial magnetic stimulation increases somatosensory high-frequency oscillations in humans. Neurosci Lett 358:193–196

    Article  PubMed  CAS  Google Scholar 

  • Porter JT, Johnson CK, Agmon A (2001) Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci 21:2699–2710

    PubMed  CAS  Google Scholar 

  • Sakuma K, Hashimoto I (1999) High-frequency magnetic oscillations evoked by posterior tibial nerve stimulation. Neuroreport 10:227–230

    Article  PubMed  CAS  Google Scholar 

  • Sakuma K, Sekihara K, Hashimoto I (1999) Neural source estimation from a time-frequency component of somatic evoked high-frequency magnetic oscillations to posterior tibial nerve stimulation. Clin Neurophysiol 110:1585–1588

    Article  PubMed  CAS  Google Scholar 

  • Sakuma K, Takeshima T, Ishizaki K, Nakashima K (2004) Somatosensory evoked high-frequency oscillations in migraine patients. Clin Neurophysiol 115:1857–1862

    Article  PubMed  Google Scholar 

  • Scheperjans F, Palomero-Gallagher N, Grefkes C, Schleicher A, Zilles K (2005) Transmitter receptors reveal segregation of cortical areas in the human superior parietal cortex: relations to visual and somatosensory regions. Neuroimage 28:362–379

    Article  PubMed  Google Scholar 

  • Shimazu H, Kaji R, Tsujimoto T, Kohara N, Ikeda A, Kimura J, Shibasaki H (2000) High-frequency SEP components generated in the somatosensory cortex of the monkey. Neuroreport 11:2821–2826

    Article  PubMed  CAS  Google Scholar 

  • Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572–584

    Article  PubMed  Google Scholar 

  • Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J (2002) Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 543:699–708

    Article  PubMed  CAS  Google Scholar 

  • Storozhuk VM, Khorevin VI, Razumna NN, Tetko IV, Villa AP (2003) The effects of activation of glutamate ionotropic connections of neurons in the sensorimotor cortex in a conditioned reflex. Neurosci Behav Physiol 33:479–488

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Ma CL, Kelly JB, Wu SH (2006a) GABA(B) receptor-mediated presynaptic inhibition of glutamatergic transmission in the inferior colliculus. Neurosci Lett 399:151–156

    Article  PubMed  CAS  Google Scholar 

  • Sun QQ, Huguenard JR, Prince DA (2006b) Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons. J Neurosci 26:1219–1230

    Article  PubMed  CAS  Google Scholar 

  • Tsuji T, Rothwell JC (2002) Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans. J Physiol 540:367–376

    Article  PubMed  CAS  Google Scholar 

  • Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K, Cohen LG, Benecke R, Classen J (2003) A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89:2339–2345

    Article  PubMed  Google Scholar 

  • Wolters A, Schmidt A, Schramm A, Zeller D, Naumann M, Kunesch E, Benecke R, Reiners K, Classen J (2005) Timing-dependent plasticity in human primary somatosensory cortex. J Physiol 565:1039–1052

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Hallett M, Cohen LG (1998) Mechanisms of deafferentation-induced plasticity in human motor cortex. J Neurosci 18:7000–7007

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Yoshio C. Okada for his insightful comments, and thank Masayoshi Kusumi, MD, PhD, for his insightful comments on statistical analysis. This study was supported by a Grant-in-Aid from the Research Committee on rTMS treatment of movement disorders, the Ministry of Health and Welfare of Japan (17231401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takenobu Murakami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murakami, T., Sakuma, K., Nomura, T. et al. Changes in somatosensory-evoked potentials and high-frequency oscillations after paired-associative stimulation. Exp Brain Res 184, 339–347 (2008). https://doi.org/10.1007/s00221-007-1103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1103-0

Keywords

Navigation