Skip to main content
Log in

When vision ‘extinguishes’ touch in neurologically-normal people: extending the Colavita visual dominance effect

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Research has shown that people fail to report the presence of the auditory component of suprathreshold audiovisual targets significantly more often than they fail to detect the visual component in speeded response tasks. Here, we investigated whether this phenomenon, known as the “Colavita effect”, also affects people’s perception of visuotactile stimuli as well. In Experiments 1 and 2, participants made speeded detection/discrimination responses to unimodal visual, unimodal tactile, and bimodal (visual and tactile) stimuli. A significant Colavita visual dominance effect was observed (i.e., participants failed to respond to touch far more often than they failed to respond to vision on the bimodal trials). This dominance of vision over touch was significantly larger when the stimuli were presented from the same position than when they were presented from different positions (Experiment 3), and still occurred even when the subjective intensities of the visual and tactile stimuli had been matched (Experiment 4), thus ruling out a simple intensity-based account of the results. These results suggest that the Colavita visual dominance effect (over touch) may result from a competition between the neural representations of the two stimuli for access to consciousness and/or the recruitment of attentional resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A more detailed comparison of the two studies is made difficult by the fact that no specific attempt was made to match the intensity of the stimuli, either within or between these studies. It should, however, be noted that Colavita and Weisberg (1979) explicitly looked for any effect of changes in the intensity of the auditory stimulus on the magnitude of the visual dominance over audition. They found absolutely no effect of intensity changes on the magnitude of the Colavita visual dominance effect, even when the subjective intensity of the sound was doubled from one experiment to the next.

  2. Note that this argument makes the assumption that the two elements of a bimodal trial are perceived as a pair of stimuli that are associated with their own unique response, i.e., lifting both footpedals (cf. Fagot and Pashler 1992; Koppen and Spence 2007a; Schumacher et al. 2001).

  3. While both stimuli were presented at a supra-threshold level, no attempt was made in this study to match the intensities of the visual and vibrotactile stimuli (cf. Koppen and Spence 2007a, b, c; Sinnett et al. 2007; Spence et al. 2001b). Thus, it is possible that the visual and tactile stimuli may have been presented at different subjective intensities.

  4. It should, however, be noted that the relatively lower alerting capability of visual stimuli as compared as tactile stimuli, although asserted by various researchers over the years (e.g., Posner et al. 1976; Von Haller Gilmer 1960), has never, as far as we are aware, been put to direct empirical test.

  5. Note that the results reported here might also be consistent with the MLE framework if one assumes that visual stimuli simply provide more reliable (i.e., accurate) information about the presence of a stimulus in the environment than do tactile stimuli. In this regard, it is perhaps worth noting that the sense of touch actually performs a dual function, both informing us about events in the environment as well as about the status of our body (see Spence et al. 2001a).

  6. It should, however, be noted that for the case of crossmodal extinction, it is the relative position of the two stimuli that determines stimulus is extinguished (i.e., the more contralesional stimulus) while with the Colavita effect, the target modalities of the stimuli determine which stimulus tends to go unnoticed (i.e., the tactile stimulus in the experiments reported here).

References

  • Banich MT (1998) The missing link: the role of interhemispheric interaction in attentional processing. Brain Cognit 36:128–157

    Article  CAS  Google Scholar 

  • Battaglia PW, Jacobs RA, Aslin RN (2003) Bayesian integration of visual and auditory signals for spatial localization. J Opt Soc Am A 20:1391–1397

    Article  Google Scholar 

  • Bedford FL (2001) Towards a general law of numerical/object identity. Curr Psychol Cognit 20:113–175

    Google Scholar 

  • Behrmann M, Moscovitch M, Mozer MC (1991) Directing attention to words and nonwords in normal subjects and in a computational model: implications for neglect dyslexia. Cognit Neuropsychol 8:213–248

    Article  Google Scholar 

  • Bender MB (1952) Disorders of perception. Charles C. Thomas, Springfield

    Google Scholar 

  • Bertelson P (1961) Sequential redundancy and speed in a serial two-choice responding task. Q J Exp Psychol 13:90–102

    Article  Google Scholar 

  • Bertelson P, Aschersleben G (1998) Automatic visual bias of perceived auditory location. Psychon Bull Rev 5:482–489

    Google Scholar 

  • Bertelson P, de Gelder B (2004) The psychology of multimodal perception. In: Spence C, Driver J (eds) Crossmodal space and crossmodal attention. Oxford University Press, Oxford, pp 141–178

    Google Scholar 

  • Botvinick M, Cohen J (1998) Rubber hands ‘feel’ touch that eyes see. Nature 391:756

    Article  PubMed  CAS  Google Scholar 

  • Brewster D (1832) Natural magic. John Murray, London

    Google Scholar 

  • Calvert GA, Spence C, Stein BE (eds) (2004) The handbook of multisensory processes. MIT Press, Cambridge

  • Cate A, Behrmann M (2002) Spatial and temporal influences on extinction. Neuropsychologia 40:2206–2225

    Article  PubMed  Google Scholar 

  • Colavita FB (1974) Human sensory dominance. Percept Psychophys 16:409–412

    Google Scholar 

  • Colavita FB, Tomko R, Weisberg D (1976) Visual prepotency and eye orientation. Bull Psychon Soc 8:25–26

    Google Scholar 

  • Colavita FB, Weisberg D (1979) A further investigation of visual dominance. Percept Psychophys 25:345–347

    PubMed  CAS  Google Scholar 

  • Congedo M, Lécuyer A, Gentaz E (2006) The influence of spatial delocation on perceptual integration of vision and touch. Presence Teleoper Virtual Environ 15:353–357

    Article  Google Scholar 

  • Cornsweet TN (1962) The staircase-method in psychophysics. Am J Psychol 75:485–491

    Article  PubMed  CAS  Google Scholar 

  • Costantini M, Bueti D, Pazzaglia M, Aglioti SM (2007) Temporal dynamics of visuo-tactile extinction between and within-hemispaces. Neuropsychology 21:242–250

    Article  PubMed  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222

    Article  PubMed  CAS  Google Scholar 

  • di Pellegrino G, Làdavas E, Farné A (1997) Seeing where your hands are. Nature 388:730

    Article  PubMed  CAS  Google Scholar 

  • Egeth HE, Sager LC (1977) On the locus of visual dominance. Percept Psychophys 22:77–86

    Google Scholar 

  • Ehrsson HH, Spence C, Passingham RE (2004) That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305:875–877

    Article  PubMed  CAS  Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  PubMed  CAS  Google Scholar 

  • Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cognit Sci 8:162–169

    Article  Google Scholar 

  • Fagot C, Pashler H (1992) Making two responses to a single object: implications for the central attentional bottleneck. J Exp Psychol Hum Percept Perform 18:1058–1079

    Article  PubMed  CAS  Google Scholar 

  • Gallace A, Spence C (2005) Visual capture of apparent limb position influences tactile temporal order judgments. Neurosci Lett 379:63–68

    Article  PubMed  CAS  Google Scholar 

  • Gallace A, Spence C (2007) The cognitive and neural correlates of “tactile consciousness”: a multisensory perspective. Conscious Cognit. doi:10.1016/j.concog.2007.01.005

  • Gallace A, Auvray M, Tan HZ, Spence C (2006) When visual transients impair tactile change detection: a novel case of crossmodal change blindness? Neurosci Lett 398:280–285

    Article  PubMed  CAS  Google Scholar 

  • Gallace A, Tan HZ, Spence C (2007) The body surface as a communication system: the state of the art after 50 years. Presence Teleoper Visual Environ 16:655–676

    Article  Google Scholar 

  • Gephstein S, Burge J, Ernst MO, Banks MS (2005) The combination of vision and touch depends on spatial proximity. J Vis 5:1013–1023

    Article  Google Scholar 

  • Gibson JJ (1943) Adaptation, after-effect and contrast in the perception of curved lines. J Exp Psychol 16:1–31

    Article  Google Scholar 

  • Gregory RL (1967) Origin of eyes and brains. Nature 213:369–372

    Article  PubMed  CAS  Google Scholar 

  • Guest S, Spence C (2003) Tactile dominance in the speeded discrimination of textures. Exp Brain Res 150:201–207

    PubMed  Google Scholar 

  • Hari R, Jousmäki V (1996) Preference of personal to extrapersonal space in a visuomotor task. J Cognit Neurosci 8:305–307

    Article  Google Scholar 

  • Hay JC, Pick HL Jr, Ikeda K (1965) Visual capture produced by prism spectacles. Psychonom Sci 2:215–216

    Google Scholar 

  • Heymans G (1899) Untersuchungen über psychische Hemmung [Investigations of psychological inhibition]. Z Psychol Physiol Sinnesorgane 21:321–359

    Google Scholar 

  • Ho C, Spence C (2005) Assessing the effectiveness of various auditory cues in capturing a driver’s visual attention. J Exp Psychol Appl 11:157–174

    Article  PubMed  Google Scholar 

  • Ho C, Reed N, Spence C (2007) Multisensory in-car warning signals for collision avoidance. Hum Factors 49:1107–1114

    Article  PubMed  Google Scholar 

  • Jacobson E (1911) Experiments on the inhibition of sensations. Psychol Rev 18:24–53

    Article  Google Scholar 

  • Kitagawa N, Ichihara S (2002) Hearing visual motion in depth. Nature 416:172–174

    Article  PubMed  CAS  Google Scholar 

  • Klein RM (1977) Attention and visual dominance: a chronometric analysis. J Exp Psychol Hum Percept Performance 3:365–378

    Article  CAS  Google Scholar 

  • Koppen C, Spence C (2007a) Seeing the light: exploring the Colavita visual dominance effect. Exp Brain Res 180:737–754

    Article  PubMed  Google Scholar 

  • Koppen C, Spence C (2007b) Spatial coincidence modulates the Colavita visual dominance effect. Neurosci Lett 417:107–111

    Article  PubMed  CAS  Google Scholar 

  • Koppen C, Spence C (2007c) Assessing the role of stimulus probability on the Colavita visual dominance effect. Neurosci Lett 418:266–271

    Article  PubMed  CAS  Google Scholar 

  • Koppen C, Spence C (2007d) Audiovisual asynchrony modulates the Colavita visual dominance effect. Brain Res 1186:224–232

    Article  PubMed  CAS  Google Scholar 

  • Koppen C, Spence C (2008) A signal detection study of the Colavita visual dominance effect. Acta Psychologica (submitted)

  • Lederman SJ, Thorne G, Jones B (1986) Perception of texture by vision and touch: multidimensionality and intersensory integration. J Exp Psychol Hum Percept Performance 12:169–180

    Article  CAS  Google Scholar 

  • Maravita A, Spence C, Driver J (2003) Multisensory integration and the body schema: close to hand and within reach. Curr Biol 13:R531–R539

    Article  PubMed  CAS  Google Scholar 

  • Mattingley JB, Driver J, Beschin N, Robertson IH (1997) Attentional competition between modalities: extinction between touch and vision after right hemisphere damage. Neuropsychologia 35:867–880

    Article  PubMed  CAS  Google Scholar 

  • Meredith MA (2004) Corticocortical connectivity of cross-modal circuits. In: Calvert GA, Spence C, Stein BE (eds) The handbook of multisensory processes. MIT Press, Cambridge, pp 343–356

    Google Scholar 

  • Nico D (1999) Effectiveness of sensory stimulation on tactile extinction. Exp Brain Res 127:75–82

    Article  PubMed  CAS  Google Scholar 

  • Oviatt S (1999) Ten myths of multimodal interaction. Commun ACM 42:74–81

    Article  Google Scholar 

  • Partan S, Marler P (1999) Communication goes multimodal. Science 283:1272–1273

    Article  PubMed  CAS  Google Scholar 

  • Pashler H (1994) Dual-task interference in simple tasks: data and theory. Psychol Bull 116:220–244

    Article  PubMed  CAS  Google Scholar 

  • Pashler H, Baylis G (1991) Procedural learning: 2. Intertrial repetition effects in speeded-choice tasks. J Exp Psychol Learn Mem Cognit 17:33–48

    Article  Google Scholar 

  • Pavani F, Spence C, Driver J (2000) Visual capture of touch: out-of-the-body experiences with rubber gloves. Psychol Sci 11:353–359

    Article  PubMed  CAS  Google Scholar 

  • Pick HL Jr, Warren DH, Hay JC (1969) Sensory conflict in judgements of spatial direction. Percept Psychophys 6:203–205

    Google Scholar 

  • Posner MI (1978) Chronometric explorations of mind. Erlbaum, Hillsdale

    Google Scholar 

  • Posner MI, Nissen MJ, Klein RM (1976) Visual dominance: an information-processing account of its origins and significance. Psychol Rev 83:157–171

    Article  PubMed  CAS  Google Scholar 

  • Quinlan P (2000) The ‘late’ locus of visual dominance. Abstr Psychon Soc 5:64

    Google Scholar 

  • Randich A, Klein RM, LoLordo VM (1978) Visual dominance in the pigeon. J Exp Anal Behav 30:129–137

    Article  PubMed  Google Scholar 

  • Rock I, Victor J (1964) Vision and touch: an experimentally created conflict between the two senses. Science 143:594–596

    Article  PubMed  CAS  Google Scholar 

  • Rock I, Harris CS (1967) Vision and touch. Sci Am 216(5):96–104

    Article  PubMed  CAS  Google Scholar 

  • Santangelo V, Spence C (2007) Assessing the automaticity of reflexive tactile attentional orienting. Perception 36:1497–1505

    Article  PubMed  Google Scholar 

  • Sarri M, Blankenburg F, Driver J (2006) Neural correlates of crossmodal visual-tactile extinction and of tactile awareness revealed by fMRI in a right-hemisphere stroke patient. Neuropsychologia 44:2398–2410

    Article  PubMed  Google Scholar 

  • Schneider W, Eschman A, Zuccolotto A (2002a) E-Prime user’s guide. Psychology Software Tools Inc, Pittsburgh

    Google Scholar 

  • Schneider W, Eschman A, Zuccolotto A (2002b) E-Prime reference guide. Psychology Software Tools Inc, Pittsburgh

    Google Scholar 

  • Schumacher EH, Seymour TL, Glass JM, Fencsik DE, Lauber EJ, Kieras DE, Meyer DE (2001) Virtually perfect time sharing in dual-task performance: uncorking the central cognitive bottleneck. Psychol Sci 12:101–108

    Article  PubMed  CAS  Google Scholar 

  • Shams L, Kamitani Y, Shimojo S (2000) What you see is what you hear: sound induced visual flashing. Nature 408:788

    Article  PubMed  CAS  Google Scholar 

  • Shapiro KL, Johnson TL (1987) Effects of arousal on attention to central and peripheral visual stimuli. Acta Psychol 66:157–172

    Article  CAS  Google Scholar 

  • Sinnett S, Spence C, Soto-Faraco S (2007) Visual dominance and attention: the Colavita effect revisited. Percept Psychophys 69:673–686

    PubMed  Google Scholar 

  • Spence C (2007) Audiovisual multisensory integration. Acoust Sci Technol 28:61–70

    Article  Google Scholar 

  • Spence C (2008) Making sense of touch: a multisensory approach to the perception of objects. In: Pye E (ed) Magic touch. UCL Press, London (in press)

  • Spence C, Driver J (eds) (2004) Crossmodal space and crossmodal attention. Oxford University Press, Oxford

  • Spence C, Nicholls MER, Driver J (2001a) The cost of expecting events in the wrong sensory modality. Percept Psychophys 63:330–336

    PubMed  CAS  Google Scholar 

  • Spence C, Shore DI, Klein RM (2001b) Multisensory prior entry. J Exp Psychol Gen 130:799–832

    Article  PubMed  CAS  Google Scholar 

  • Stein BE, Stanford TR, Wallace MT, Vaughan WJ, Jiang W (2004) Crossmodal spatial interactions in subcortical and cortical circuits. In: Spence C, Driver J (eds) Crossmodal space and crossmodal attention. Oxford University Press, Oxford, pp 25–50

    Google Scholar 

  • Stein BE, Meredith MA (1993) The merging of the senses. MIT Press, Cambridge

    Google Scholar 

  • Stevenson RA, Geoghegan ML, James TW (2007) Superadditive BOLD activation in superior temporal sulcus with threshold non-speech objects. Exp Brain Res 179:85–95

    Article  PubMed  Google Scholar 

  • Stratton GM (1899) The spatial harmony of touch and sight. Mind 8:492–550

    Google Scholar 

  • Turatto M, Galfano G, Bridgeman B, Umiltà C (2004) Space-independent modality-driven attentional capture in auditory, tactile and visual systems. Exp Brain Res 155:301–310

    Article  PubMed  Google Scholar 

  • Uetake K, Kudo Y (1994) Visual dominance over hearing in feed acquisition procedure of cattle. Appl Anim Behav Sci 42:1–9

    Article  Google Scholar 

  • Vallar G, Rusconi ML, Bignamini L, Geminiani G, Perani D (1994) Anatomical correlates of visual and tactile extinction in humans: a clinical CT scan study. J Neurol Neurosurg Psychiatry 57:464–470

    PubMed  CAS  Google Scholar 

  • Van Erp JBF, Van Veen HAHC (2004) Vibrotactile in-vehicle navigation system. Transport Res Part F 7:247–256

    Google Scholar 

  • Vatakis A, Spence C(2007) Crossmodal binding: evaluating the “unity assumption” using audiovisual speech stimuli. Percept Psychophys 69:744–756

    PubMed  Google Scholar 

  • Von Haller Gilmer B (1960) Possibilities of cutaneous electro-pulse communication. In: Hawkes GR (ed) Symposium on cutaneous sensitivity. U.S. Army Medical Research Laboratory, Fort Knox, pp 76–84

    Google Scholar 

  • Ward R, Goodrich S, Driver J (1994) Grouping reduces visual extinction. Vis Cognit 1:101–129

    Article  Google Scholar 

  • Warren DH, Rossano MJ (1991) Intermodality relations: vision and touch. In: Heller MA, Schiff W (eds) The psychology of touch. Lawrence Erlbaum Associates, London, pp 119–137

    Google Scholar 

  • Welch RB (1999) Meaning, attention, and the “unity assumption” in the intersensory bias of spatial and temporal perceptions. In: Ashersleben G, Bachmann T, Müsseler J (eds) Cognitive contributions to the perception of spatial and temporal events. Elsevier Science, B.V, Amsterdam, pp 371–387

    Chapter  Google Scholar 

  • Welch RB, Warren DH (1980) Immediate perceptual response to intersensory discrepancy. Psychol Bull 3:638–667

    Article  Google Scholar 

  • Welch RB, Warren DH (1986) Intersensory interactions. In: Boff KR, Kaufman L, Thomas JP (eds) Handbook of perception and performance: vol 1 sensory processes and perception. Wiley, New York, pp 25-1–25-36

    Google Scholar 

  • World Medical Association (2000) Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Med Assoc 284:3043–3045

    Article  Google Scholar 

  • Zampini M, Shore DI, Spence C (2003) Multisensory temporal order judgements: the role of hemispheric redundancy. Int J Psychophysiol 50:165–180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jess Hartcher-O’Brien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartcher-O’Brien, J., Gallace, A., Krings, B. et al. When vision ‘extinguishes’ touch in neurologically-normal people: extending the Colavita visual dominance effect. Exp Brain Res 186, 643–658 (2008). https://doi.org/10.1007/s00221-008-1272-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1272-5

Keywords

Navigation