Skip to main content
Log in

Responses of caudal vestibular nucleus neurons of conscious cats to rotations in vertical planes, before and after a bilateral vestibular neurectomy

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Although many previous experiments have considered the responses of vestibular nucleus neurons to rotations and translations of the head, little data are available regarding cells in the caudalmost portions of the vestibular nuclei (CVN), which mediate vestibulo-autonomic responses among other functions. This study examined the responses of CVN neurons of conscious cats to rotations in vertical planes, both before and after a bilateral vestibular neurectomy. None of the units included in the data sample had eye movement-related activity. In labyrinth-intact animals, some CVN neurons (22%) exhibited graviceptive responses consistent with inputs from otolith organs, but most (55%) had dynamic responses with phases synchronized with stimulus velocity. Furthermore, the large majority of CVN neurons had response vector orientations that were aligned either near the roll or vertical canal planes, and only 18% of cells were preferentially activated by pitch rotations. Sustained head-up rotations of the body provide challenges to the cardiovascular system and breathing, and thus the response dynamics of the large majority of CVN neurons were dissimilar to those of posturally-related autonomic reflexes. These data suggest that vestibular influences on autonomic control mediated by the CVN are more complex than previously envisioned, and likely involve considerable processing and integration of signals by brainstem regions involved in cardiovascular and respiratory regulation. Following a bilateral vestibular neurectomy, CVN neurons regained spontaneous activity within 24 h, and a very few neurons (<10%) responded to vertical tilts <15° in amplitude. These findings indicate that nonlabyrinthine inputs are likely important in sustaining the activity of CVN neurons; thus, these inputs may play a role in functional recovery following peripheral vestibular lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker J, Goldberg J, Hermann G, Peterson BW (1984) Spatial and temporal response properties of secondary neurons that receive convergent input in vestibular nuclei of adult cats. Brain Res 294:138–143

    Article  PubMed  CAS  Google Scholar 

  • Balaban CD, Beryozkin G (1994) Vestibular nucleus projections to nucleus tractus solitarius and the dorsal motor nucleus of the vagus nerve: potential substrates for vestibulo-autonomic interactions. Exp Brain Res 98:200–212

    Article  PubMed  CAS  Google Scholar 

  • Bankoul S, Goto T, Yates BJ, Wilson VJ (1995) Cervical primary afferent input to vestibulospinal neurons projecting to the cervical dorsal horn: an anterograde and retrograde tracing study in the cat. J Comp Neurol 353:529–538

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH, Yakhnitsa V (2000) Vestibular signals in the parasolitary nucleus. J Neurophysiol 83:3559–3569

    PubMed  CAS  Google Scholar 

  • Barmack NH, Baughman RW, Eckenstein FP, Shojaku H (1992) Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol 317:250–270

    Article  PubMed  CAS  Google Scholar 

  • Chubb MC, Fuchs AF, Scudder CA (1984) Neuron activity in monkey vestibular nuclei during vertical vestibular stimulation and eye movements. J Neurophysiol 52:724–742

    PubMed  CAS  Google Scholar 

  • Cotter LA, Arendt HE, Jasko JG, Sprando C, Cass SP, Yates BJ (2001) Effects of postural changes and vestibular lesions on diaphragm and rectus abdominis activity in awake cats. J Appl Physiol 91:137–144

    PubMed  CAS  Google Scholar 

  • Cotter LA, Arendt HE, Cass SP, Jian BJ, Mays DF, 2nd, Olsheski CJ, Wilkinson KA, Yates BJ (2004) Effects of postural changes and vestibular lesions on genioglossal muscle activity in conscious cats. J Appl Physiol 96:923–930

    Article  PubMed  CAS  Google Scholar 

  • Dickman JD, Angelaki DE (2002) Vestibular convergence patterns in vestibular nuclei neurons of alert primates. J Neurophysiol 88:3518–3533

    Article  PubMed  Google Scholar 

  • Endo K, Thomson DB, Wilson VJ, Yamaguchi T, Yates BJ (1995) Vertical vestibular input to and projections from the caudal parts of the vestibular nuclei of the decerebrate cat. J Neurophysiol 74:428–436

    PubMed  CAS  Google Scholar 

  • Epema AH, Guldemond JM, Voogd J (1985) Reciprocal connections between the caudal vermis and the vestibular nuclei in the rabbit. Neurosci Lett 57:273–278

    Article  PubMed  CAS  Google Scholar 

  • Gdowski GT, McCrea RA (1999) Integration of vestibular and head movement signals in the vestibular nuclei during whole-body rotation. J Neurophysiol 82:436–449

    PubMed  CAS  Google Scholar 

  • Gstoettner W, Burian M, Cartellieri M (1992) Central projections from singular parts of the vestibular labyrinth in the guinea pig. Acta Otolaryngol 112:486–495

    Article  PubMed  CAS  Google Scholar 

  • Jian BJ, Cotter LA, Emanuel BA, Cass SP, Yates BJ (1999) Effects of bilateral vestibular lesions on orthostatic tolerance in awake cats. J Appl Physiol 86:1552–1560

    Article  PubMed  CAS  Google Scholar 

  • Jian BJ, Shintani T, Emanuel BA, Yates BJ (2002) Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons. Exp Brain Res 144:247–257

    Article  PubMed  CAS  Google Scholar 

  • Jian BJ, Acernese AW, Lorenzo J, Card JP, Yates BJ (2005) Afferent pathways to the region of the vestibular nuclei that participates in cardiovascular and respiratory control. Brain Res 1044:241–250

    Article  PubMed  CAS  Google Scholar 

  • Kasper J, Schor RH, Wilson VJ (1988) Response of vestibular neurons to head rotations in vertical planes. I. Response to vestibular stimulation. J Neurophysiol 60:1753–1764

    PubMed  CAS  Google Scholar 

  • Kerman IA, Yates BJ (1998) Regional and functional differences in the distribution of vestibulosympathetic reflexes. Am J Physiol Regul Integr Comp Physiol 275:R824–R835

    CAS  Google Scholar 

  • Kevetter GA, Perachio AA (1986) Distribution of vestibular afferents that innervate the sacculus and posterior canal in the gerbil. J Comp Neurol 254:410–424

    Article  PubMed  CAS  Google Scholar 

  • Martinelli GP, Friedrich VL Jr, Prell GD, Holstein GR (2007) Vestibular neurons in the rat contain imidazoleacetic acid-ribotide, a putative neurotransmitter involved in blood pressure regulation. J Comp Neurol 501:568–581

    Article  PubMed  CAS  Google Scholar 

  • Mori RL, Cotter LA, Arendt HE, Olsheski CJ, Yates BJ (2005) Effects of bilateral vestibular nucleus lesions on cardiovascular regulation in conscious cats. J Appl Physiol 98:526–533

    Article  PubMed  CAS  Google Scholar 

  • Newlands SD, Perachio AA (2003) Central projections of the vestibular nerve: a review and single fiber study in the Mongolian gerbil. Brain Res Bull 60:475–495

    Article  PubMed  Google Scholar 

  • Newlands SD, Purcell IM, Kevetter GA, Perachio AA (2002) Central projections of the utricular nerve in the gerbil. J Comp Neurol 452:11–23

    Article  PubMed  Google Scholar 

  • Newlands SD, Vrabec JT, Purcell IM, Stewart CM, Zimmerman BE, Perachio AA (2003) Central projections of the saccular and utricular nerves in macaques. J Comp Neurol 466:31–47

    Article  PubMed  Google Scholar 

  • Patton JFR, La Noce A, Sykes RM, Sebastiani L, Bagnoli P, Ghelarducci B, Bradley DJ (1991) Efferent connections of lobule IX of the posterior cerebellar cortex in the rabbit—some functional considerations. J Auton Nerv Syst 36:209–223

    Article  Google Scholar 

  • Peterson BW, Maunz RA, Fukushima K (1978) Properties of a new vestibulospinal projection, the caudal vestibulospinal tract. Exp Brain Res 32:287–292

    PubMed  CAS  Google Scholar 

  • Porter JD, Balaban CD (1997) Connections between the vestibular nuclei and brain stem regions that mediate autonomic function in the rat. J Vestib Res 7:63–76

    Article  PubMed  CAS  Google Scholar 

  • Ris L, Godaux E (1998) Neuronal activity in the vestibular nuclei after contralateral or bilateral labyrinthectomy in the alert guinea pig. J Neurophysiol 80:2352–2367

    PubMed  CAS  Google Scholar 

  • Rossiter CD, Yates BJ (1996) Vestibular influences on hypoglossal nerve activity in the cat. Neurosci Lett 211:25–28

    Article  PubMed  CAS  Google Scholar 

  • Rossiter CD, Hayden NL, Stocker SD, Yates BJ (1996) Changes in outflow to respiratory pump muscles produced by natural vestibular stimulation. J Neurophysiol 76:3274–3284

    PubMed  CAS  Google Scholar 

  • Ruggiero DA, Mtui EP, Otake K, Anwar M (1996) Vestibular afferents to the dorsal vagal complex: substrate for vestibular-autonomic interactions in the rat. Brain Res 743:294–302

    Article  PubMed  CAS  Google Scholar 

  • Ryu JH, McCabe BF (1976) Central vestibular compensation. Effect of the bilateral labyrinthectomy on neural activity in the medial vestibular nucleus. Arch Otolaryngol 102:71–76

    PubMed  CAS  Google Scholar 

  • Sato Y, Kanda K, Ikarashi K, Kawasaki T (1989) Differential mossy fiber projections to the dorsal and ventral uvula in the cat. J Comp Neurol 279:149–164

    Article  PubMed  CAS  Google Scholar 

  • Schor RH, Angelaki DE (1992) The algebra of neural response vectors. Ann N Y Acad Sci 656:190–204

    Article  PubMed  CAS  Google Scholar 

  • Schor RH, Miller AD, Tomko DL (1984) Responses to head tilt in cat central vestibular neurons. I. Direction of maximum sensitivity. J Neurophysiol 51:136–146

    PubMed  CAS  Google Scholar 

  • Shojaku H, Sato Y, Ikarashi K, Kawasaki T (1987) Topographical distribution of Purkinje cells in the uvula and the nodulus projecting to the vestibular nuclei in cats. Brain Res 416:100–112

    Article  PubMed  CAS  Google Scholar 

  • Thunnissen IE, Epema AH, Gerrits NM (1989) Secondary vestibulocerebellar mossy fiber projection to the caudal vermis in the rabbit. J Comp Neurol 290:262–277

    Article  PubMed  CAS  Google Scholar 

  • Uchino Y, Kudo N, Tsuda K, Iwamura Y (1970) Vestibular inhibition of sympathetic nerve activities. Brain Res 22:195–206

    Article  PubMed  CAS  Google Scholar 

  • Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. Plenum Press, New York

    Google Scholar 

  • Wilson TD, Cotter LA, Draper JA, Misra SP, Rice CD, Cass SP, Yates BJ (2006) Vestibular inputs elicit patterned changes in limb blood flow in conscious cats. J Physiol 575:671–684

    Article  PubMed  CAS  Google Scholar 

  • Woodring SF, Rossiter CD, Yates BJ (1997) Pressor response elicited by nose-up vestibular stimulation in cats. Exp Brain Res 113:165–168

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ, Miller AD (1994) Properties of sympathetic reflexes elicited by natural vestibular stimulation: implications for cardiovascular control. J Neurophysiol 71:2087–2092

    PubMed  CAS  Google Scholar 

  • Yates BJ, Bronstein AM (2005) The effects of vestibular system lesions on autonomic regulation: observations, mechanisms, and clinical implications. J Vestib Res 15:119–129

    PubMed  Google Scholar 

  • Yates BJ, Jakus J, Miller AD (1993) Vestibular effects on respiratory outflow in the decerebrate cat. Brain Res 629:209–217

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ, Grélot L, Kerman IA, Balaban CD, Jakus J, Miller AD (1994) Organization of vestibular inputs to nucleus tractus solitarius and adjacent structures in cat brain stem. Am J Physiol 267:R974–R983

    PubMed  CAS  Google Scholar 

  • Yates BJ, Balaban CD, Miller AD, Endo K, Yamaguchi Y (1995) Vestibular inputs to the lateral tegmental field of the cat: potential role in autonomic control. Brain Res 689:197–206

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ, Jian BJ, Cotter LA, Cass SP (2000) Responses of vestibular nucleus neurons to tilt following chronic bilateral removal of vestibular inputs. Exp Brain Res 130:151–158

    Article  PubMed  CAS  Google Scholar 

  • Yingcharoen K, Siegborn J, Grant G (2003) Brainstem projections of different branches of the vestibular nerve: an experimental study by transganglionic transport of horseradish peroxidase in the cat. III. The saccular nerve. Exp Brain Res 151:190–196

    Article  PubMed  Google Scholar 

  • Zhou W, Tang BF, Newlands SD, King WM (2006) Responses of monkey vestibular-only neurons to translation and angular rotation. J Neurophysiol 96:2915–2930

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Joseph Troupe III and Jason Draper for assistance with some of the experiments, and Dr. Joseph Furman for providing helpful comments regarding a previous version of the paper. Funding was provided by Grant R01-DC00693 from the National Institutes of Health (USA). Core support was provided by NIH grant P30-DC05205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Yates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, D.M., Cotter, L.A., Gandhi, N.J. et al. Responses of caudal vestibular nucleus neurons of conscious cats to rotations in vertical planes, before and after a bilateral vestibular neurectomy. Exp Brain Res 188, 175–186 (2008). https://doi.org/10.1007/s00221-008-1359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1359-z

Keywords

Navigation