Skip to main content
Log in

Self-specific processing in the default network: a single-pulse TMS study

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In examining neural processing specific to the self, primarily by contrasting self-related stimuli with non-self-related stimuli (i.e., self vs. other), neuroimaging studies have activated a consistent set of regions, including medial prefrontal cortex (MPFC), precuneus, and right and left inferior parietal cortex. However, criticism has arisen that this network may not be specific to self-related processing, but instead reflects a more general aspect of cortical processing. For example, it is almost identical to the active network of the resting state, the “default” mode, when the subject is free to think about anything at all. We tested the self-specificity of this network by using transcranial magnetic stimulation (TMS) to briefly disrupt local cortical processing while subjects rated adjectives as like or unlike themselves or their best friend. Healthy volunteers show a self-reference effect (SRE) in this task, in which performance with self-related items is superior to that with other-related items. As individual adjectives appeared on a monitor, single-pulse TMS was applied at five different times relative to stimulus onset (SOA: stimulus onset asynchrony) ranging from 0 to 480 ms. In 18 subjects, TMS to left parietal cortex suppressed the SRE from 160 to 480 ms. SRE suppression occurred at later SOA with TMS to the right parietal cortex. In contrast, no effects were seen with TMS to MPFC. Together with our previous work, these results provide evidence for a self-specific processing system in which midline and lateral inferior parietal cortices, as elements of the default network, play a role in ongoing self-awareness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addis DR, McIntosh AR, Moscovitch M, Crawley AP, McAndrews MP (2004) Characterizing spatial and temporal features of autobiographical memory retrieval networks: a partial least squares approach. NeuroImage 23:1460–1471

    Article  PubMed  Google Scholar 

  • Anderson NH (1968) Likableness ratings of 555 personality-trait words. J Pers Soc Psychol 9:272–279

    Google Scholar 

  • Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Watkins GL, Boles Ponto LL, Hichwa RD (1995) Remembering the past: two facets of episodic memory explored with positron emission tomography. Am J Psychiatry 152:1576–1585

    CAS  PubMed  Google Scholar 

  • Baars BJ (2002) The conscious access hypothesis: origins and recent evidence. Trends Cogn Sci 6:47–52

    Article  PubMed  Google Scholar 

  • Baars BJ (2005) Subjective experience is probably not limited to humans: the evidence from neurobiology and behavior. Conscious Cogn 14:7–21

    Article  PubMed  Google Scholar 

  • Barbas H, Mesulam M-M (1981) Organization of afferent input to subdivisions of area 8 in the rhesus monkey. J Comp Neurol 200:407–431

    Article  CAS  PubMed  Google Scholar 

  • Beer J, Blakemore C, Previc FH, Liotti M (2002) Areas of the human brain activated by ambient visual motion, indicating three kinds of self movement. Exp Brain Res 143:78–88

    Article  PubMed  Google Scholar 

  • Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW (1999) Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci 17:905–917

    Article  Google Scholar 

  • Catani M, Jones DK, Ffyche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16

    Article  PubMed  Google Scholar 

  • Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583

    Article  PubMed  Google Scholar 

  • Chugani HT (1998) A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med 27:184–188

    Article  CAS  PubMed  Google Scholar 

  • Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105:7–17

    Article  CAS  PubMed  Google Scholar 

  • Craik FIM, Moroz TM, Moscovich M, Stuss DT, Winocur G, Tulving E, Kapur S (1999) In search of the self: a positron emission tomography study. Psychol Sci 10:26–34

    Article  Google Scholar 

  • Dehaene S, Sergent C, Changeux J-P (2003) A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc Natl Acad Sci USA 100:8520–8525

    Article  CAS  PubMed  Google Scholar 

  • Deng Z-D, Peterchev AV, Lisanby SH (2008) Coil design considerations for deep-brain transcranial magnetic stimulation (dTMS). In: Conference Proceedings of IEEE Engineering in Medicine and Biology Society, pp 5675–5679

  • Deng Z-D, Lisanby SH, Peterchev AV (2009) Effect of anatomical variability on neural stimulation strength and focality in electroconvulsive therapy (ECT) and magnetic seizure therapy (MST). In: Conference Proceedings of IEEE Engineering in Medicine and Biology Society, pp 682–688

  • Fossati P, Hevenor SJ, Graham SJ et al (1995) In search of the emotional self: an fMRi study using positive and negative emotional words. Am J Psychiatry 160:1938–1945

    Article  Google Scholar 

  • Fransson P (2006) How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44:2836–2845

    Article  PubMed  Google Scholar 

  • Fuster JM (2000) Cortical dynamics of memory. Int J Psychophysiol 35:155–164

    Article  CAS  PubMed  Google Scholar 

  • Gardiner JM (2001) Episodic memory and autonoetic consciousness: a first person approach. Philos Trans R Soc Lond B Biol Sci 356:1351

    Google Scholar 

  • Gilboa A, Winocur G, Grady CL, Hevenor SJ, Moscovitch M (2004) Remembering our past: functional neuroanatomy of recollection of recent and very remote personal events. Cereb Cortex 14:1214–1225

    Article  PubMed  Google Scholar 

  • Gillihan SJ, Farah MJ (2005) Is self special? A critical review of evidence from experimental psychology and cognitive neuroscience. Psychol Bull 131:76–97

    Article  PubMed  Google Scholar 

  • Gould RL, Brown RG, Owen AM, Bullmore ET, Howard RJ (2006) Task-induced deactivations during successful paired-associates learning: an effect of age but not Alzheimer’s disease. NeuroImage 31:818–831

    Article  PubMed  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258

    Article  CAS  PubMed  Google Scholar 

  • Gusnard DA (2005) Being a self: considerations from functional imaging. Conscious Cogn 14:679–697

    Article  PubMed  Google Scholar 

  • Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    Article  CAS  PubMed  Google Scholar 

  • Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA 98:4259–4264

    Article  CAS  PubMed  Google Scholar 

  • Hayward G, Goodwin GM, Harmer CJ (2004) The role of the anterior cingulate cortex in the counting Stroop task. Exp Brain Res 154:355–358

    Article  PubMed  Google Scholar 

  • Homan RW, Herman J, Purdy P (1987) Cerebral location of international 10–20 system electrode placement. Electroencephalogr Clin Neurophysiol 66:376–382

    Google Scholar 

  • Johnson SC, Baxter LC, Wilder LS, Pipe JG, Heiserman JE, Prigatano GP (2002) Neural correlates of self-reflection. Brain 125:1808–1814

    Article  PubMed  Google Scholar 

  • Kelley WM, Macrae CN, Wyland CL, Caglar S, Inati S, Heatherton TF (2002) Finding the self? An event-related fMRI study. J Cogn Neurosci 14:785–794

    Article  CAS  PubMed  Google Scholar 

  • Keyes H, Brady N, Reilly RB, Foxe JJ (2010) My face or yours? Event-related potential correlates of self-face processing. Brain Cogn 72:244–254

    Article  PubMed  Google Scholar 

  • Kircher TTJ, Senior C, Phillips ML, Benson PJ, Bullmore ET, Brammer M et al (2000) Towards a functional neuroanatomy of self processing: effects of faces and words. Cogn Brain Res 10:133–144

    Article  CAS  Google Scholar 

  • Kircher TTJ, Senior C, Phillips ML, Rabe-Hesketh S, Benson PJ, Bullmore ET et al (2001) Recognizing one’s own face. Cognition 78:B1–B15

    Article  CAS  PubMed  Google Scholar 

  • Kjaer TW, Nowak M, Lou HC (2002) Reflective self-awareness and conscious states: PET evidence for a common midline parietofrontal core. NeuroImage 17:1080–1086

    Article  PubMed  Google Scholar 

  • Koch KW, Fuster JM (1989) Unit activity in monkey parietal cortex related to haptic perception and temporary memory. Exp Brain Res 76:292–306

    Article  CAS  PubMed  Google Scholar 

  • Kwan VS, Barrios V, Ganis G, Gorman J, Lange C, Kumar M, Shepard A, Keenan JP (2007) Assessing the neural correlates of self-enhancement bias: a transcranial magnetic stimulation study. Exp Brain Res 182:379–385

    Article  PubMed  Google Scholar 

  • Libet B, Pearl DK, Morledge DM, Gleason CA, Hosobuchi Y, Barbaro NM (1991) Control of the transition from sensory detection to sensory awareness in man by the duration of a thalamic stimulus. The cerebral time-on factor. Brain 114:1731–1757

    Article  PubMed  Google Scholar 

  • Lou HC, Luber B, Crupain M, Keenan J, Nowak M, Kjaer T, Sackeim H, Lisanby SH (2004) Parietal cortex and representation of the mental self. Proc Natl Acad Sci USA 101(17):6827–6832

    Article  CAS  PubMed  Google Scholar 

  • Luber B, Peterchev A, Nguyen T, Sporn A, Lisanby SH (2007a) Application of TMS in psychophysiological studies. In: Cacioppo JT, Tassinary LG, Berntson GG (eds) Handbook of psychophysiology, 3rd edn. Cambridge University Press, New York

    Google Scholar 

  • Luber B, Kinnunen LH, Rakitin BC, Ellsasser R, Stern Y, Lisanby SH (2007b) Facilitation of performance in a working memory task with rTMS stimulation of the precuneus: frequency and time-dependent effects. Brain Res 1128:120–129

    Article  CAS  PubMed  Google Scholar 

  • Lundstrom BN, Ingvar M, Petersson KM (2005) The role of precuneus and left inferior frontal cortex during source memory episodic retrieval. NeuroImage 27:824–834

    Article  PubMed  Google Scholar 

  • Magno E, Allan K (2007) Self-reference during explicit memory retrieval. An event-related potential analysis. Psychol Sci 18:672–677

    Article  PubMed  Google Scholar 

  • Maguire EA, Mummery CJ (1999) Differential modulation of a common memory retrieval network revealed by positron emission tomography. Hippocampus 9:54–61

    Article  CAS  PubMed  Google Scholar 

  • Mason MF, Norton ML, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315:393–395

    Article  CAS  PubMed  Google Scholar 

  • Mazoyor B, Zago L, Mellet E, Bricogne S, Etard O, Houde O et al (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54:287–298

    Article  Google Scholar 

  • McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR (2003) A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15:394–408

    Article  PubMed  Google Scholar 

  • Mesulam M-M, Van Hoesen GW, Pandya DN, Geschwind N (1977) Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry. Brain Res 136:393–414

    Article  CAS  PubMed  Google Scholar 

  • Miyakoshi M, Nomura M, Ohira H (2007) An ERP study on self-relevant object recognition. Brain Cogn 63:182–189

    Article  PubMed  Google Scholar 

  • Mufson EJ, Mesulam MM (1984) Thalamic connections of the insula in the rhesus monkey and comments on the paralimbic connectivity of the medial pulvinar nucleus. J Comp Neurol 227:109–120

    Article  CAS  PubMed  Google Scholar 

  • Nuňez JM, Casey BJ, Egner T, Harre T, Hirsch J (2005) Intentional false responding shares neural substrates with response conflict and cognitive control. NeuroImage 25:267–277

    Article  PubMed  Google Scholar 

  • Ochsner KN, Beer JS, Robertson ER et al (2005) The neural correlates of direct and reflected self-knowledge. NeuroImage 28:797–814

    Article  PubMed  Google Scholar 

  • Perrin F, Maquet P, Peigneux P et al (2005) Neural mechanisms involved in the detection of our first name: a combined ERP and PET study. Neuropsychologia 43:12–19

    Article  PubMed  Google Scholar 

  • Pitcher JB, Ogston KM, Miles TS (2003) Age and sex differences in human motor cortex input–output characteristics. J Physiol 546(2):605–613

    Article  CAS  PubMed  Google Scholar 

  • Platek SM, Keenan JP, Gallup GG, Mohamed FB (2004) Where am I? The neurological correlates of self and other. Cogn Brain Res 19:114–122

    Article  Google Scholar 

  • Raichle ME (1998) Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc Natl Acad Sci USA 95(3):765–772

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682

    Google Scholar 

  • Rogers TB, Kuiper NA, Kirker WS (1977) Self-reference and the encoding of personal information. J Pers Soc Psychol 35:677–688

    Article  CAS  PubMed  Google Scholar 

  • Rossi S, Pasqualetti P, Zito G, Vecchio F, Cappa SF, Miniussi C, Babiloni C, Rossini PM (2006) Prefrontal and parietal cortex in human episodic memory an interference study by repetitive transcranial magnetic stimulation. Eur J Neurosci 23:793–800

    Article  PubMed  Google Scholar 

  • Rossini PM, Rossi S (2007) Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology 68:484–488

    Google Scholar 

  • Ruby P, Legrand D (2008) Neuro imaging the self? In: Haggard P, Rosetti Y, Kawato M (eds) Sensorimotor foundations of higher cognition. Attention and performance XXII. Oxford University Press, London

    Google Scholar 

  • Schilbach L, Eickhoff SB, Rotarska-Jagiela A, Fink GR, Vogeley K (2008) Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious Cogn 17:457–467

    Article  PubMed  Google Scholar 

  • Schmitz TW, Kawahara-Baccus TN, Johnson SC (2004) Metacognitive evaluation, self-relevance, and the right prefrontal cortex. NeuroImage 22:1168–1177

    Article  Google Scholar 

  • Shallice T, Fletcher P, Frith CD, Grasby RS, Frackowiack RSJ, Dolan RJ (1994) Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 368:633–635

    Article  CAS  PubMed  Google Scholar 

  • Sugiura M, Sassa Y, Watanabe J et al (2006) Cortical mechanisms of person representation: recognition of famous and personally familiar names. NeuroImage 31:853–860

    Article  PubMed  Google Scholar 

  • Symons CS, Johnson BT (1997) The self-reference effect in memory: a meta-analysis. Psychol Bull 121:371–394

    Article  CAS  PubMed  Google Scholar 

  • Tononi G, Edelman GM (2000) Schizophrenia and the mechanism of conscious integration. Brain Res Rev 31:391–400

    Article  CAS  PubMed  Google Scholar 

  • Trojanowski JQ, Jacobson J (1974) Medial pulvinar afferents to frontal eye fields in rhesus monkey demonstrated by horseradish peroxidase. Brain Res 80:395–411

    Article  CAS  PubMed  Google Scholar 

  • Tulving E, Kapur S, Markovitsch HJ, Craik FIM, Habib R, Houle S (1994) Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition. Proc Natl Acad Sci USA 91:2012–2015

    Article  CAS  PubMed  Google Scholar 

  • Uddin LQ, Molnar-Szakacs I, Zaidel E, Iacoboni M (2006) rTMS to the right parietal lobule disrupts self-other discrimination. Soc Cogn Affect Neurosci 1:65–71

    Article  PubMed  Google Scholar 

  • van den Heuvel MP, Mandl RCW, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30:3127–3141

    Article  PubMed  Google Scholar 

  • Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, Buckner RL (2006) Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol 96:3517–3531

    Article  PubMed  Google Scholar 

  • Vinogradov S, Luks TL, Simpson GV, Schulman BJ, Glenn S, Wong AE (2006) Brain activation patterns during memory of cognitive agency. NeuroImage 31:896–905

    Article  PubMed  Google Scholar 

  • Walsh V, Ellison A, Ashbridge E, Cowey A (1999) The role of the parietal cortex in visual attention- hemispheric asymmetries and the effects of learning: a magnetic stimulation study. Neuropsychologia 37:245–251

    Article  CAS  PubMed  Google Scholar 

  • Wicker B, Ruby P, Royet JP, Fonlupt P (2003) A relation between rest and the self in the brain? Brain Res Rev 43:224–230

    Article  PubMed  Google Scholar 

  • Zelazo PD (2004) The development of conscious control in childhood. Trends Cogn Sci 8:12–17

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Lisanby has received research support, for topics not presented here, from Magstim Company, Neuronetics, Cyberonics, and ANS. Columbia University has applied for a patent for novel TMS technology developed in Dr. Lisanby’s Laboratory, for work unrelated to the topic presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans C. Lou.

Additional information

Hans C. Lou and Bruce Luber are shared first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, H.C., Luber, B., Stanford, A. et al. Self-specific processing in the default network: a single-pulse TMS study. Exp Brain Res 207, 27–38 (2010). https://doi.org/10.1007/s00221-010-2425-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2425-x

Keywords

Navigation