Skip to main content
Log in

Prolonged high-altitude residence impacts verbal working memory: an fMRI study

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Oxygen is critical to normal brain functioning and development. In high altitude where the oxygen concentration and pressure are very low, human cognitive capability such as working memory has been found to be jeopardized. Such effect might persist with long-term high-altitude residence. The current study investigated the verbal working memory of 28 high-altitude residents with blood level oxygen dependent (BOLD) functional magnetic resonance imaging (fMRI), in contrast with that of the 30 sea level residents. All of the subjects were healthy college students, matched on their age, gender ratio and social-economic status; they also did not show any difference on their hemoglobin level. The high-altitude subjects showed longer reaction time and decreased response accuracy in behavioral performance. Both groups showed activation in the typical regions associated with the 2-back verbal working memory task, and the behavioral performance of both groups showed significant correlations with the BOLD signal change amplitude and Granger causality values (as a measure of the interregional effective connectivity) between these regions. With group comparison statistics, the high-altitude subjects showed decreased activation at the inferior and middle frontal gyrus, the middle occipital and the lingual gyrus, the pyramis of vermis, as well as the thalamus. In conclusion, the current study revealed impairment in verbal working memory among high-altitude residents, which might be associated with the impact of prolonged chronic hypoxia exposure on the brain functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Awh E, Jonides J, Smith EE, Schumacher EH, Koeppe RA, Katz S (1996) Dissociation of storage and rehearsal in verbal working memory. Psychol Sci 7:25–31

    Article  Google Scholar 

  • Basnyat B, Wu T, Gertsch JH (2004) Neurological conditions at altitude that fall outside the usual definition of altitude sickness. High Alt Med Biol 5:171–179

    Article  PubMed  Google Scholar 

  • Bolmont B, Bouquet C, Thullier F (2001) Relationship of personality traits with performance in RT, psychomotor ability, and mental efficiency during a 31-day simulated climb of Mount Everest in a hypobaric chamber. Percept Mot Skills 92:1022–1030

    CAS  PubMed  Google Scholar 

  • Büchel C, Coull JT, Friston KJ (1999) The predictive value of changes in effective connectivity for human learning. Science 283:1538

    Article  PubMed  Google Scholar 

  • Bush G, Frazier JA, Rauch SL, Seidman LJ, Whalen PJ, Jenike MA, Rosen BR, Biederman J (1999) Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biol Psychiatry 45:1542–1552

    Article  CAS  PubMed  Google Scholar 

  • Chee MWL, Venkatraman V, Westphal C, Siong SC (2003) Comparison of block and event-related fMRI designs in evaluating the word-frequency effect. Human Brain Mapp 18:186–193

    Article  Google Scholar 

  • Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE (1997) Temporal dynamics of brain activation during a working memory task. Nature 386:604–608

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC (1998) A common network of functional areas for attention and eye movements. Neuron 21:761–773

    Article  CAS  PubMed  Google Scholar 

  • Courtney SM, Ungerleider LG, Keil K, Haxby JV (1997) Transient and sustained activity in a distributed neural system for human working memory. Nature 386:608–611

    Article  CAS  PubMed  Google Scholar 

  • Courtney SM, Petit L, Haxby JV, Ungerleider LG (1998) The role of prefrontal cortex in working memory: examining the contents of consciousness. Phil Trans R Soc Lond B 353:1819

    Article  CAS  Google Scholar 

  • Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Xu L, Bressler SL, Ding M, Liang H (2008) BSMART: a Matlab/C toolbox for analysis of multichannel neural time series. Neural Netw 21:1094–1104

    Article  PubMed  Google Scholar 

  • D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M (1995) The neural basis of the central executive system of working memory. Nature 378:279–281

    Article  PubMed  Google Scholar 

  • D’Esposito M, Aguirre GK, Zarahn E, Ballard D, Shin RK, Lease J (1998) Functional MRI studies of spatial and nonspatial working memory. Cogn Brain Res 7:1–13

    Article  Google Scholar 

  • D’Esposito M, Postle BR, Rypma B (2000) Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Exp Brain Res 133:3–11

    Article  PubMed  Google Scholar 

  • De Fockert JW, Rees G, Frith CD, Lavie N (2001) The role of working memory in visual selective attention. Science 291:1803

    Article  PubMed  Google Scholar 

  • Deshpande G, Santhanam P, Hu X (2010) Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data. NeuroImage [Epub ahead of print]

  • Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH (1997) Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci 17:9675–9685

    CAS  PubMed  Google Scholar 

  • Ding M, Chen Y, Bressler SL (2006) Granger causality: basic theory and application to neuroscience. In: Schelter S, Winterhalder N, Timmer J (eds) Handbook of time series analysis. Wiley, Wienheim, pp 438–460

    Google Scholar 

  • Engle RW, Kane MJ (2003) Executive attention, working memory capacity, and a two-factor theory of cognitive control. Psychol Learn Motiv 44:145–199

    Article  Google Scholar 

  • Engle RW, Kane MJ, Tuholski SW (1999) Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. In: Akira Miyake PS (ed) Models of working memory: mechanisms of active maintenance and executive control. Cambridge University Press, New York, pp 102–134

  • Fiez JA, Raife EA, Balota DA, Schwarz JP, Raichle ME, Petersen SE (1996) A positron emission tomography study of the short-term maintenance of verbal information. J Neurosci 16:808

    CAS  PubMed  Google Scholar 

  • Filipek PA (1995) Quantitative magnetic resonance imaging in autism: the cerebellar vermis. Curr Opin Neurol 8:134

    Article  CAS  PubMed  Google Scholar 

  • Fisher RA (1915) Frequency distribution of the values of the correlation coefficient in samples of an indefinitely large population. Biometrika 10:507–521

    Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. PNAS 102:9673–9678

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78

    Article  Google Scholar 

  • Gevins A, Smith ME (2000) Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb Cortex 10:829

    Article  CAS  PubMed  Google Scholar 

  • Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438

    Article  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. PNAS 100:253–258

    Article  CAS  PubMed  Google Scholar 

  • Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    Article  CAS  PubMed  Google Scholar 

  • Hillis AE, Work M, Barker PB, Jacobs MA, Breese EL, Maurer K (2004) Re-examining the brain regions crucial for orchestrating speech articulation. Brain 127:1479

    Article  PubMed  Google Scholar 

  • Hochachka PW, Clark CM, Brown WD, Stanley C, Stone CK, Nickles RJ, Zhu GG, Allen PS, Holden JE (1994) The brain at high altitude: hypometabolism as a defense against chronic hypoxia? J Cereb Blood Flow Metab 14:671–679

    CAS  PubMed  Google Scholar 

  • Hochachka PW, Clark CM, Matheson GO, Brown WD, Stone CK, Nickles RJ, Holden JE (1999) Effects on regional brain metabolism of high-altitude hypoxia: a study of six US marines. Am J Physiol Regul Integr Comp Physiol 277:R314–R319

    CAS  Google Scholar 

  • Kane MJ, Engle RW (2002) The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychon Bull Rev 9:637

    PubMed  Google Scholar 

  • Kramer AF, Coyne JT, Strayer DL (1993a) Cognitive function at high altitude. Hum Factors 35:329–344

    CAS  PubMed  Google Scholar 

  • Kramer AF, Coyne JT, Strayer DL (1993b) Cognitive function at high altitude. Hum Factors 35:329–344

    CAS  PubMed  Google Scholar 

  • Krueger F, Landgraf S, van der Meer E, Deshpande G, Hu X (2010) Effective connectivity of the multiplication network: a functional MRI and multivariate granger causality mapping study. Hum Brain Mapp [Epub ahead of print]

  • Le TH, Patel S, Roberts TPL (2001) Functional MRI of human auditory cortex using block and event-related designs. MRM 45:254–260

    CAS  Google Scholar 

  • Logie RH (1986) Visuo-spatial processing in working memory. Q J Exp Psychol A 38:229–247

    CAS  PubMed  Google Scholar 

  • Maa EH (2010) Hypobaric hypoxic cerebral insults: the neurological consequences of going higher. NeuroRehabilitation 26:73–84

    PubMed  Google Scholar 

  • MacDonald AW, Cohen JD, Stenger VA, Carter CS (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288:1835–1838

    Article  CAS  PubMed  Google Scholar 

  • Manes F, Springer J, Jorge R, Robinson RG (1999) Verbal memory impairment after left insular cortex infarction. J Neurol Neurosurg Psychiatry 67:532

    Article  CAS  PubMed  Google Scholar 

  • Margulies DS, Kelly AMC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2007) Mapping the functional connectivity of anterior cingulate cortex. NeuroImage 37:579–588

    Article  PubMed  Google Scholar 

  • Paulesu E, Frith CD, Frackowiak RSJ (1993) The neural correlates of the verbal component of working memory. Nature 362:342–345

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. PNAS 98:676–682

    Article  CAS  PubMed  Google Scholar 

  • Rostrup E, Larsson HBW, Born AP, Knudsen GM, Paulson OB (2005) Changes in BOLD and ADC weighted imaging in acute hypoxia during sea-level and altitude adapted states. NeuroImage 28:947–955

    Article  PubMed  Google Scholar 

  • Schloser RGM, Wagner G, Sauer H (2006) Assessing the working memory network: studies with functional magnetic resonance imaging and structural equation modeling. Neuroscience 139:91–103

    Article  Google Scholar 

  • Seth AK (2009) A MATLAB toolbox for Granger causal connectivity analysis. J Neurosci Methods 186:262–273

    Article  PubMed  Google Scholar 

  • Seth AK (2010) A MATLAB toolbox for Granger causal connectivity analysis. J Neurosci Methods 186:262–273

    Article  PubMed  Google Scholar 

  • Smith EE, Jonides J, Koeppe RA (1996a) Dissociating verbal and spatial working memory using PET. Cereb Cortex 6:11–20

    Article  CAS  PubMed  Google Scholar 

  • Smith EE, Jonides J, Koeppe RA (1996b) Dissociating verbal and spatial working memory using PET. Cereb Cortex 6:11

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW (2010) Network modelling methods for FMRI. NeuroImage [Epub ahead of print]

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Thieme, New York, USA

    Google Scholar 

  • Uddin LQ, Supekar K, Amin H, Rykhlevskaia E, Nguyen DA, Greicius MD, Menon V (2010) Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex 20(11):2636–2646

    Article  PubMed  Google Scholar 

  • van Veen V, Carter CS (2006) Conflict and cognitive control in the brain. Curr Dir Psychol Sci 15:237–240

    Article  Google Scholar 

  • Virues-Ortega J, Buela-Casal G, Garrido E, Alcazar B (2004) Neuropsychological functioning associated with high-altitude exposure. Neuropsychol Rev 14:197–224

    Article  PubMed  Google Scholar 

  • Virues-Ortega J, Garrido E, Javierre C, Kloezeman KC (2006) Human behaviour and development under high-altitude conditions. Dev Sci 9:400–410

    Article  PubMed  Google Scholar 

  • West JB (2004) The physiologic basis of high-altitude diseases. Ann Intern Med 141:789–800

    PubMed  Google Scholar 

  • West JB, Readhead A (2004) Working at high altitude: medical problems, misconceptions, and solutions. Observatory 124:1–13

    Google Scholar 

  • WHO (1996) World health statistics annual. World Health Organization, Geneva

  • Wilson MH, Newman S, Imray CH (2009) The cerebral effects of ascent to high altitudes. Lancet Neurol 8:175–191

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Kayser B (2006) High altitude adaptation in Tibetans. High Alt Med Biol 7:193–208

    Article  PubMed  Google Scholar 

  • Zhang J, Yan X, Shi J, Gong Q, Weng X, Liu Y (2010) Structural modifications of the brain in acclimatization to high-altitude. PLoS ONE 5:e11449

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Bharat Biswal and Dr. Bart Rypma for their valuable comments on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxing Zhang.

Additional information

X. Yan and J. Zhang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, X., Zhang, J., Gong, Q. et al. Prolonged high-altitude residence impacts verbal working memory: an fMRI study. Exp Brain Res 208, 437–445 (2011). https://doi.org/10.1007/s00221-010-2494-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2494-x

Keywords

Navigation