Skip to main content

Advertisement

Log in

Effect of anesthesia and cerebral blood flow on neuronal injury in a rat middle cerebral artery occlusion (MCAO) model

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Middle cerebral artery occlusion (MCAO) models have become well established as the most suitable way to simulate stroke in experimental studies. The high variability in the size of the resulting infarct due to filament composition, rodent strain and vessel anatomy makes the setup of such models very complex. Beside controllable variables of homeostasis, the choice of anesthetics and the grade of ischemia and reperfusion played a major role for extent of neurological injury. Transient MCAO was induced during either isoflurane or ketamine/xylazine (ket/xyl) anesthesia with simultaneously measurement of cerebral blood flow (CBF) in 60 male Wistar rats (380–420 g). Neurological injury was quantified after 24 h. Isoflurane compared with ket/xyl improved mortality 24 h after MCAO (10 vs. 50 %, p = 0.037) and predominantly led to striatal infarcts (78 vs. 18 %, p = 0.009) without involvement of the neocortex and medial caudoputamen. Independent of anesthesia type, cortical infarcts could be predicted with a sensitivity of 67 % and a specificity of 100 % if CBF did not exceed 35 % of the baseline value during ischemia. In all other cases, cortical infarcts developed if the reperfusion values remained below 50 %. Hyperemia during reperfusion significantly increased infarct and edema volumes. The cause of frequent striatal infarcts after isoflurane anesthesia might be attributed to an improved CBF during ischemia (46 ± 15 % vs. 35 ± 19 %, p = 0.04). S-100β release, edema volume and upregulation of IL-6 and IL-1β expression were impeded by isoflurane. Thus, anesthetic management as well as the grade of ischemia and reperfusion after transient MCAO demonstrated important effects on neurological injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ayata C, Dunn AK, Gursoy-OZdemir Y, Huang Z, Boas DA, Moskowitz MA (2004) Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J Cereb Blood Flow Metab 24:744–755

    Article  PubMed  Google Scholar 

  • Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD (1996) Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 27:1616–1622 (discussion 1623)

    Article  PubMed  CAS  Google Scholar 

  • Beyersdorf F (2009) The use of controlled reperfusion strategies in cardiac surgery to minimize ischaemia/reperfusion damage. Cardiovasc Res 83:262–268

    Article  PubMed  CAS  Google Scholar 

  • Bouley J, Fisher M, Henninger N (2007) Comparison between coated vs. uncoated suture middle cerebral artery occlusion in the rat as assessed by perfusion/diffusion weighted imaging. Neurosci Lett 412:185–190

    Article  PubMed  CAS  Google Scholar 

  • Brint S, Jacewicz M, Kiessling M, Tanabe J, Pulsinelli W (1988) Focal brain ischemia in the rat: methods for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral and ipsilateral common carotid arteries. J Cereb Blood Flow Metab 8:474–485

    Article  PubMed  CAS  Google Scholar 

  • Coyle P, Jokelainen PT (1982) Dorsal cerebral arterial collaterals of the rat. Anat Rec 203:397–404

    Article  PubMed  CAS  Google Scholar 

  • Dang J, Mitkari B, Kipp M, Beyer C (2011) Gonadal steroids prevent cell damage and stimulate behavioral recovery after transient middle cerebral artery occlusion in male and female rats. Brain Behav Immun 25:715–726

    Article  PubMed  CAS  Google Scholar 

  • Denes A, Ferenczi S, Kovacs KJ (2011) Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation, blood- brain barrier damage and brain oedema independently of infarct size. J Neuroinflammation 8:164

    Article  PubMed  CAS  Google Scholar 

  • Elango C, Devaraj SN (2010) Immunomodulatory effect of Hawthorn extract in an experimental stroke model. J Neuroinflammation 7:97

    Article  PubMed  Google Scholar 

  • Emsley HCA, Smith CJ, Tyrrell PJ, Hopkins SJ (2008) Inflammation in acute ischemic stroke and its relevance to stroke critical care. Neurocrit Care 9:125–138

    Article  PubMed  CAS  Google Scholar 

  • Engelhorn T, Doerfler A, Forsting M, Heusch G, Schulz R (2005) Does a relative perfusion measure predict cerebral infarct size? AJNR Am J Neuroradiol 26:2218–2223

    PubMed  Google Scholar 

  • Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, Lo EH (2009) Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40:2244–2250

    Article  PubMed  Google Scholar 

  • Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26:627–634

    Article  PubMed  CAS  Google Scholar 

  • Gerriets T, Stolz E, Walberer M et al (2004) Complications and pitfalls in rat stroke models for middle cerebral artery occlusion: a comparison between the suture and the macrosphere model using magnetic resonance angiography. Stroke 35:2372–2377

    Article  PubMed  Google Scholar 

  • Hossmann K (2009) Pathophysiological basis of translational stroke research. Folia Neuropathol 47:213–227

    PubMed  CAS  Google Scholar 

  • Jolkkonen J, Puurunen K, Koistinaho J, Kauppinen R, Haapalinna A, Nieminen L, Sivenius J (1999) Neuroprotection by the alpha2-adrenoceptor agonist, dexmedetomidine, in rat focal cerebral ischemia. Eur J Pharmacol 372:31–36

    Article  PubMed  CAS  Google Scholar 

  • Kapinya KJ, Lowl D, Futterer C, Maurer M, Waschke KF, Isaev NK, Dirnagl U (2002) Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke 33:1889–1898

    Article  PubMed  CAS  Google Scholar 

  • Kirkeby OJ, Rise IR, Nordsletten L, Skjeldal S, Hall C, Risöe C (1995) Cerebral blood flow measured with intracerebral laser-Dopplerflow probes and radioactive microspheres. J Appl Physiol 79:1479–1486

    PubMed  CAS  Google Scholar 

  • Kohrs R, Durieux ME (1998) Ketamine: teaching an old drug new tricks. Anesth Analg 87:1186–1193

    PubMed  CAS  Google Scholar 

  • Kramer M, Dang J, Baertling F et al (2010) TTC staining of damaged brain areas after MCA occlusion in the rat does not constrict quantitative gene and protein analyses. J Neurosci Methods 187:84–89

    Article  PubMed  Google Scholar 

  • Kuge Y, Minematsu K, Yamaguchi T, Miyake Y (1995) Nylon monofilament for intraluminal middle cerebral artery occlusion in rats. Stroke 26:1655–1657

    Article  PubMed  CAS  Google Scholar 

  • Kuraoka M, Furuta T, Matsuwaki T, Omatsu T, Ishii Y, Kyuwa S, Yoshikawa Y (2009) Direct experimental occlusion of the distal middle cerebral artery induces high reproducibility of brain ischemia in mice. Exp Anim 58:19–29

    Article  PubMed  CAS  Google Scholar 

  • Laing RJ, Jakubowski J, Laing RW (1993) Middle cerebral artery occlusion without craniectomy in rats. Which method works best? Stroke 24:294–297

    Article  PubMed  CAS  Google Scholar 

  • Li L, Zuo Z (2009) Isoflurane preconditioning improves short-term and long-term neurological outcome after focal brain ischemia in adult rats. Neuroscience 164:497–506

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Schafer DP, McCullough LD (2009) TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods 179:1–8

    Article  PubMed  CAS  Google Scholar 

  • Livnat A, Barbiro-Michaely E, Mayevsky A (2010) Mitochondrial function and cerebral blood flow variable responses to middle cerebral artery occlusion. J Neurosci Methods 188:76–82

    Article  PubMed  CAS  Google Scholar 

  • Luh C, Gierth K, Timaru-Kast R, Engelhard K, Werner C, Thal SC (2011) Influence of a brief episode of anesthesia during the induction of experimental brain trauma on secondary brain damage and inflammation. PLoS ONE 6:e19948

    Article  PubMed  CAS  Google Scholar 

  • Maekawa T, Tommasino C, Shapiro HM, Keifer-Goodman J, Kohlenberger RW (1986) Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat. Anesthesiology 65:144–151

    Article  PubMed  CAS  Google Scholar 

  • Memezawa H, Minamisawa H, Smith ML, Siesjo BK (1992) Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res 89:67–78

    Article  PubMed  CAS  Google Scholar 

  • Munakata H, Okada K, Hasegawa T, Hino Y, Kano H, Matsumori M, Okita Y (2010) Controlled low-flow reperfusion after warm brain ischemia reduces reperfusion injury in canine model. Perfusion 25:159–168

    Article  PubMed  Google Scholar 

  • Nellgard B, Mackensen GB, Massey G, Pearlstein RD, Warner DS (2000) The effects of anesthetics on stress responses to forebrain ischemia and reperfusion in the rat. Anesth Analg 91:145–151

    Article  PubMed  CAS  Google Scholar 

  • Nemergut EC (2009) Ketamine: still learning its secrets after 45 years. J Neurosurg Pediatr 4:37–38

    Article  PubMed  Google Scholar 

  • Oliff HS, Coyle P, Weber E (1997) Rat strain and vendor differences in collateral anastomoses. J Cereb Blood Flow Metab 17:571–576

    Article  PubMed  CAS  Google Scholar 

  • Ozden S, Isenmann S (2004) Neuroprotective properties of different anesthetics on axotomized rat retinal ganglion cells in vivo. J Neurotrauma 21:73–82

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, London

    Google Scholar 

  • Peters O, Back T, Lindauer U, Busch C, Megow D, Dreier J, Dirnagl U (1998) Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18:196–205

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew LC, Kindy MS, Scheff S, Springer JE, Kryscio RJ, Li Y, Grass DS (2008) Focal cerebral ischemia in the TNFalpha-transgenic rat. J Neuroinflammation 5:47

    Article  PubMed  Google Scholar 

  • Petullo D, Masonic K, Lincoln C, Wibberley L, Teliska M, Yao DL (1999) Model development and behavioral assessment of focal cerebral ischemia in rats. Life Sci 64:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Prieto R, Carceller F, Roda JM, Avendano C (2005) The intraluminal thread model revisited: rat strain differences in local cerebral blood flow. Neurol Res 27:47–52

    Article  PubMed  Google Scholar 

  • Proescholdt M, Heimann A, Kempski O (2001) Neuroprotection of S(+) ketamine isomer in global forebrain ischemia. Brain Res 904:245–251

    Article  PubMed  CAS  Google Scholar 

  • Ryang Y, Dang J, Kipp M et al (2011) Solulin reduces infarct volume and regulates gene-expression in transient middle cerebral artery occlusion in rats. BMC Neurosci 12:113

    Article  PubMed  CAS  Google Scholar 

  • Sagher O, Huang D, Keep RF (2003) Spinal cord stimulation reducing infarct volume in a model of focal cerebral ischemia in rats. J Neurosurg 99:131–137

    Article  PubMed  Google Scholar 

  • Salom JB, Orti M, Centeno JM, Torregrosa G, Alborch E (2000) Reduction of infarct size by the NO donors sodium nitroprusside and spermine/NO after transient focal cerebral ischemia in rats. Brain Res 865:149–156

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Elsaesser R, Zausinger S, Hungerhuber E, Baethmann A, Reulen HJ (1998) A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke 29:2162–2170

    Article  PubMed  CAS  Google Scholar 

  • Shimamura N, Matchett G, Tsubokawa T, Ohkuma H, Zhang J (2006) Comparison of silicon-coated nylon suture to plain nylon suture in the rat middle cerebral artery occlusion model. J Neurosci Methods 156:161–165

    Article  PubMed  CAS  Google Scholar 

  • Takagi K, Zhao W, Busto R, Ginsberg MD (1995) Local hemodynamic changes during transient middle cerebral artery occlusion and recirculation in the rat: a [14C]iodoantipyrine autoradiographic study. Brain Res 691:160–168

    Article  PubMed  CAS  Google Scholar 

  • Tamura A, Graham DI, McCulloch J, Teasdale GM (1981) Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:53–60

    Article  PubMed  CAS  Google Scholar 

  • Walberer M, Stolz E, Muller C et al (2006) Experimental stroke: ischaemic lesion volume and oedema formation differ among rat strains (a comparison between Wistar and Sprague-Dawley rats using MRI). Lab Anim 40:1–8

    Article  PubMed  CAS  Google Scholar 

  • Warner DS, Zhou JG, Ramani R, Todd MM (1991) Reversible focal ischemia in the rat: effects of halothane, isoflurane, and methohexital anesthesia. J Cereb Blood Flow Metab 11:794–802

    Article  PubMed  CAS  Google Scholar 

  • Woitzik J, Schilling L (2002) Control of completeness and immediate detection of bleeding by a single laser-Doppler flow probe during intravascular middle cerebral artery occlusion in rats. J Neurosci Methods 122:75–78

    Article  PubMed  Google Scholar 

  • Xu X, Zhang S, Yan W, Li X, Zhang H, Zheng X (2006) Development of cerebral infarction, apoptotic cell death and expression of X-chromosome-linked inhibitor of apoptosis protein following focal cerebral ischemia in rats. Life Sci 78:704–712

    Article  PubMed  CAS  Google Scholar 

  • Zausinger S, Baethmann A, Schmid-Elsaesser R (2002) Anesthetic methods in rats determine outcome after experimental focal cerebral ischemia: mechanical ventilation is required to obtain controlled experimental conditions. Brain Res Brain Res Protoc 9:112–121

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Mayhan WG, Sun H (2008) A modified suture technique produces consistent cerebral infarction in rats. Brain Res 1246:158–166

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Renate Nadenau and Christian Beckers for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleilevens, C., Roehl, A.B., Goetzenich, A. et al. Effect of anesthesia and cerebral blood flow on neuronal injury in a rat middle cerebral artery occlusion (MCAO) model. Exp Brain Res 224, 155–164 (2013). https://doi.org/10.1007/s00221-012-3296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3296-0

Keywords

Navigation