Skip to main content

Advertisement

Log in

Soluble RANKL Induces High Bone Turnover and Decreases Bone Volume, Density, and Strength in Mice

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Receptor activator for nuclear factor-κ B ligand (RANKL) is an essential mediator of osteoclastogenesis. We hypothesized that administration of soluble RANKL to mice would result in high turnover and deleterious effects on both cortical and trabecular bone. For 10 days, 10-week-old C57BL/6J female mice (n = 12/group) were given twice-daily subcutaneous injections of human recombinant RANKL (0.4 or 2 mg/kg/day) or inert vehicle (VEH). Bone turnover was greatly accelerated by RANKL, as evidenced by the 49–84% greater levels of serum TRAP-5b (bone resorption marker) and 300–400% greater levels of serum alkaline phosphatase (bone formation marker). RANKL resulted in significantly greater endocortical bone erosion surface (79–83%) and periosteal bone formation rate (64–87%) vs. VEH. Microcomputed tomographic (microCT) analysis of the proximal tibia indicated a reduction in trabecular volume fraction (–84%) for both doses of RANKL. Cortical bone geometry and strength were also negatively influenced by RANKL. MicroCT analysis of the femoral diaphysis indicated significantly lower cortical bone volume (−10% to –13%) and greater cortical porosity (8–9%) relative to VEH. Biomechanical testing of the femur diaphysis revealed significantly lower maximum bending load (−19% to –25%) vs. VEH. Bone strength remained correlated with bone mass, independent of RANKL stimulation of bone turnover. These findings are consistent with the hypothesis that soluble RANKL could be an important etiologic factor in pathologic bone loss. RANKL also has potential utility as a model for studying the consequences of high bone turnover on bone quality and strength in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14(Suppl 3):S13–S18

    PubMed  Google Scholar 

  2. Heaney RP (2003) Is the paradigm shifting? Bone 33:457–465

    Article  PubMed  Google Scholar 

  3. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  PubMed  CAS  Google Scholar 

  4. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  CAS  Google Scholar 

  5. Khosla S (2001) The OPG/RANKL/RANK system. Endocrinology 142:5050–5055

    Article  PubMed  CAS  Google Scholar 

  6. Hofbauer LC, Heufelder AE (2001) Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med 79:243–253

    Article  PubMed  CAS  Google Scholar 

  7. Turner CH (2002) Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int 13:97–104

    Article  PubMed  CAS  Google Scholar 

  8. Lacey DL, Tan HL, Lu J, Kaufman S, Van G, Qiu W, Rattan A, Scully S, Fletcher F, Juan T, Kelley M, Burgess TL, Boyle WJ, Polverino AJ (2000) Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 157:435–448

    PubMed  CAS  Google Scholar 

  9. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    Article  PubMed  CAS  Google Scholar 

  10. Takahashi N, Udagawa N, Suda T (1999) A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem Biophys Res Commun 256:449–455

    Article  PubMed  CAS  Google Scholar 

  11. Kostenuik PJ, Shalhoub V (2001) Osteoprotegerin: a physiological and pharmacological inhibitor of bone resorption. Curr Pharm Des 7:613–635

    Article  PubMed  CAS  Google Scholar 

  12. Mizuno A, Kanno T, Hoshi M, Shibata O, Yano K, Fujise N, Kinosaki M, Yamaguchi K, Tsuda E, Murakami A, Yasuda H, Higashio K (2002) Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis. J Bone Miner Metab 20:337–344

    Article  PubMed  CAS  Google Scholar 

  13. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  14. Nakashima T, Kobayashi Y, Yamasaki S, Kawakami A, Eguchi K, Sasaki H, Sakai H (2000) Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun 275:768–775

    Article  PubMed  CAS  Google Scholar 

  15. Stolina M, Adamu S, Ominsky M, Dwyer D, Asuncion F, Geng Z, Middleton S, Brown H, Pretorius J, Schett G, Bolon B, Feige U, Zack D, Kostenuik PJ (2005) RANKL is a marker and mediator of local and systemic bone loss in two rat models of inflammatory arthritis. J Bone Miner Res 20:1756–1765

    Article  PubMed  CAS  Google Scholar 

  16. Geusens PP, Landewe RB, Garnero P, Chen D, Dunstan CR, Lems WF, Stinissen P, van der Heijde DM, van der Linden S, Boers M (2006) The ratio of circulating osteoprotegerin to RANKL in early rheumatoid arthritis predicts later joint destruction. Arthritis Rheum 54:1772–1777

    Article  PubMed  CAS  Google Scholar 

  17. Kim HR, Kim HY, Lee SH (2006) Elevated serum levels of soluble receptor activator of nuclear factor-kappaB ligand (sRANKL) and reduced bone mineral density in patients with ankylosing spondylitis (AS). Rheumatology (Oxford) 45:1197–1200

    Article  CAS  Google Scholar 

  18. Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–1230

    PubMed  CAS  Google Scholar 

  19. Ominsky MS, Li X, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Geng Z, Grisanti M, Tan HL, Corbin T, McCabe J, Simonet WS, Ke HZ, Kostenuik PJ (2008) RANKL inhibition with osteoprotegerin (OPG) increases bone strength by improving cortical and trabecular bone architecture in ovariectomized rats. J Bone Miner Res 23(5):672–682

    Google Scholar 

  20. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, Peacock M, Miller PD, Lederman SN, Chesnut CH, Lain D, Kivitz AJ, Holloway DL, Zhang C, Peterson MC, Bekker PJ (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354:821–831

    Article  PubMed  CAS  Google Scholar 

  21. Samadfam R, Xia Q, Goltzman D (2007) Co-treatment of PTH with osteoprotegerin or alendronate increases its anabolic effect on the skeleton of oophorectomized mice. J Bone Miner Res 22:55–63

    Article  PubMed  CAS  Google Scholar 

  22. Yuan YY, Kostenuik PJ, Ominsky MS, Morony S, Adamu S, Simionescu DT, Basalyga DM, Asuncion FJ, Bateman TA (2008) Skeletal deterioration induced by RANKL infusion: a model for high-turnover bone disease. Osteoporos Int 19(5):625–635

    Article  PubMed  CAS  Google Scholar 

  23. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  PubMed  CAS  Google Scholar 

  24. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashio K, Ozawa H (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247:610–615

    Article  PubMed  CAS  Google Scholar 

  25. Ruegsegger P, Koller B, Muller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58:24–29

    Article  PubMed  CAS  Google Scholar 

  26. Dufresne T (1998) Segmentation techniques for analysis of bone by three-dimensional computed tomographic imaging. Technol Health Care 6:351–359

    PubMed  CAS  Google Scholar 

  27. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  28. Broz JJ, Simske SJ, Greenberg AR, Luttges MW (1993) Effects of rehydration state on the flexural properties of whole mouse long bones. J Biomech Eng 115:447–449

    Article  PubMed  CAS  Google Scholar 

  29. Hochberg MC, Greenspan S, Wasnich RD, Miller P, Thompson DE, Ross PD (2002) Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab 87:1586–1592

    Article  PubMed  CAS  Google Scholar 

  30. Jiang Y, Zhao J, Genant HK, Dequeker J, Geusens P (1997) Long-term changes in bone mineral and biomechanical properties of vertebrae and femur in aging, dietary calcium restricted, and/or estrogen-deprived/-replaced rats. J Bone Miner Res 12:820–831

    Article  PubMed  CAS  Google Scholar 

  31. Li CY, Schaffler MB, Wolde-Semait HT, Hernandez CJ, Jepsen KJ (2005) Genetic background influences cortical bone response to ovariectomy. J Bone Miner Res 20:2150–2158

    Article  PubMed  Google Scholar 

  32. Bouxsein ML, Myers KS, Shultz KL, Donahue LR, Rosen CJ, Beamer WG (2005) Ovariectomy-induced bone loss varies among inbred strains of mice. J Bone Miner Res 20:1085–1092

    Article  PubMed  Google Scholar 

  33. Nakamura M, Udagawa N, Matsuura S, Mogi M, Nakamura H, Horiuchi H, Saito N, Hiraoka BY, Kobayashi Y, Takaoka K, Ozawa H, Miyazawa H, Takahashi N (2003) Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144:5441–5449

    Article  PubMed  CAS  Google Scholar 

  34. Min H, Morony S, Sarosi I, Dunstan CR, Capparelli C, Scully S, Van G, Kaufman S, Kostenuik PJ, Lacey DL, Boyle WJ, Simonet WS (2000) Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med 192:463–474

    Article  PubMed  CAS  Google Scholar 

  35. Dempster DW, Cosman F, Parisien M, Shen V, Lindsay R (1993) Anabolic actions of parathyroid hormone on bone. Endocr Rev 14:690–709

    Article  PubMed  CAS  Google Scholar 

  36. Hattersley G, Dorey E, Horton MA, Chambers TJ (1998) Human macrophage colony-stimulating factor inhibits bone resorption by osteoclasts disaggregated from rat bone. J Cell Physiol 137:199–203

    Article  Google Scholar 

  37. Robling AG, Turner CH (2002) Mechanotransduction in bone: genetic effects on mechanosensitivity in mice. Bone 31:562–569

    Article  PubMed  CAS  Google Scholar 

  38. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334

    Article  PubMed  Google Scholar 

  39. Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD (2006) Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res 21:1856–1863

    Article  PubMed  Google Scholar 

  40. McCalden RW, McGeough JA, Barker MB, Court-Brown CM (1993) Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J Bone Joint Surg Am 75:1193–1205

    PubMed  CAS  Google Scholar 

  41. Bell KL, Loveridge N, Power J, Garrahan N, Meggitt BF, Reeve J (1999) Regional differences in cortical porosity in the fractured femoral neck. Bone 24:57–64

    Article  PubMed  CAS  Google Scholar 

  42. Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92:1367–1377

    Article  PubMed  CAS  Google Scholar 

  43. Simske SJ, Schmeister TA, Fleet ML, Broz JJ, Gayles EC, Luttges MW (1994) An experimental model for combined neural, muscular, and skeletal degeneration. J Neuromusculoskelet System 2:116–123

    Google Scholar 

  44. Yuan YY, Kostenuik PJ, Morony S, Simionescu DT, Basalyga DM, Bateman TA (2006) RANKL infusion as a disease model: implications for bone and vascular systems [abstract]. J Bone Miner Res 21:S163

    Article  CAS  Google Scholar 

  45. Halloran BP, Ferguson VL, Simske SJ, Burghardt A, Venton LL, Majumdar S (2002) Changes in bone structure and mass with advancing age in the male C57BL/6J mouse. J Bone Miner Res 17:1044–1050

    Article  PubMed  Google Scholar 

  46. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304–309

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowlegement

This work was supported by the National Space Biomedical Research Institute through NASA NCC 9–58, Amgen, Inc., and BioServe Space Technologies (through NASA NCC8–242). The editorial and formatting assistance of Jenny Bourne is greatly appreciated. Thanks also to Steven Adamu (Amgen, Inc.) for assistance in measuring biochemical markers and Michael Lemus for help with microCT analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted A. Bateman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloyd, S.A.J., Yuan, Y.Y., Kostenuik, P.J. et al. Soluble RANKL Induces High Bone Turnover and Decreases Bone Volume, Density, and Strength in Mice. Calcif Tissue Int 82, 361–372 (2008). https://doi.org/10.1007/s00223-008-9133-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-008-9133-6

Keywords

Navigation