Skip to main content
Log in

Fourier Transform Infrared Imaging Microspectroscopy and Tissue-Level Mechanical Testing Reveal Intraspecies Variation in Mouse Bone Mineral and Matrix Composition

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reeves GM, McCreadie BR, Shu C, Galecki AT, Burke DT, Miller RA, Goldstein SA (2006) Quantitative trait loci modulate vertebral morphology and mechanical properties in a population of 18-month-old genetically heterogeneous mice. Bone 40:433–443

    Article  PubMed  CAS  Google Scholar 

  2. Price C, Herman BC, Lufkin T, Goldman HM, Jepsen KJ (2005) Genetic variation in bone growth patterns defines adult mouse bone fragility. J Bone Miner Res 20:1983–1991

    Article  PubMed  CAS  Google Scholar 

  3. Martens M, Van Audekercke R, De Meester P, Mulier JC (1981) The geometrical properties of human femur and tibia and their importance for the mechanical behaviour of these bone structures. Arch Orthop Trauma Surg 98:113–120

    Article  PubMed  CAS  Google Scholar 

  4. Nyman JS, Roy A, Tyler JH, Acuna RL, Gayle HJ, Wang X (2007) Age-related factors affecting the postyield energy dissipation of human cortical bone. J Orthop Res 25:646–655

    Article  PubMed  Google Scholar 

  5. Busa B, Miller LM, Rubin CT, Qin YX, Judex S (2005) Rapid establishment of chemical and mechanical properties during lamellar bone formation. Calcif Tissue Int 77:386–394

    Article  PubMed  CAS  Google Scholar 

  6. Bouxsein ML, Uchiyama T, Rosen CJ, Shultz KL, Donahue LR, Turner CH, Sen S, Churchill GA, Muller R, Beamer WG (2004) Mapping quantitative trait loci for vertebral trabecular bone volume fraction and microarchitecture in mice. J Bone Miner Res 19:587–599

    Article  PubMed  CAS  Google Scholar 

  7. Turner CH (2006) Bone strength: current concepts. Ann N Y Acad Sci 1068:429–446

    Article  PubMed  Google Scholar 

  8. Blake GM, Fogelman I (2007) The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad Med J 83:509–517

    Article  PubMed  Google Scholar 

  9. Turner CH (2002) Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int 13:97–104

    Article  PubMed  CAS  Google Scholar 

  10. Rivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, Pols HA (2007) Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study. J Bone Miner Res 22:1781–1790

    Article  PubMed  Google Scholar 

  11. Wergedal JE, Sheng MH, Ackert-Bicknell CL, Beamer WG, Baylink DJ (2005) Genetic variation in femur extrinsic strength in 29 different inbred strains of mice is dependent on variations in femur cross-sectional geometry and bone density. Bone 36:111–122

    Article  PubMed  Google Scholar 

  12. Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH (1997) Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res 12:6–15

    Article  PubMed  CAS  Google Scholar 

  13. Currey JD (1969) The relationship between the stiffness and the mineral content of bone. J Biomech 2:477–480

    Article  PubMed  CAS  Google Scholar 

  14. Currey JD (1984) Effects of differences in mineralization on the mechanical properties of bone. Philos Trans R Soc Lond B Biol Sci 304:509–518

    Article  PubMed  CAS  Google Scholar 

  15. Currey JD (2004) Tensile yield in compact bone is determined by strain, postyield behaviour by mineral content. J Biomech 37:549–556

    Article  PubMed  Google Scholar 

  16. Zioupos P, Currey JD, Casinos A (2000) Exploring the effects of hypermineralisation in bone tissue by using an extreme biological example. Connect Tissue Res 41:229–248

    Article  PubMed  CAS  Google Scholar 

  17. Currey JD (1969) The mechanical consequences of variation in the mineral content of bone. J Biomech 2:1–11

    Article  PubMed  CAS  Google Scholar 

  18. Currey JD (1979) Mechanical properties of bone tissues with greatly differing functions. J Biomech 12:313–319

    Article  PubMed  CAS  Google Scholar 

  19. Martin RB, Ishida J (1989) The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J Biomech 22:419–426

    Article  PubMed  CAS  Google Scholar 

  20. Martin RB, Boardman DL (1993) The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. J Biomech 26:1047–1054

    Article  PubMed  CAS  Google Scholar 

  21. Oxlund H, Barckman M, Ortoft G, Andreassen TT (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17:365S–371S

    PubMed  CAS  Google Scholar 

  22. Oxlund H, Mosekilde L, Ortoft G (1996) Reduced concentration of collagen reducible cross links in human trabecular bone with respect to age and osteoporosis. Bone 19:479–484

    Article  PubMed  CAS  Google Scholar 

  23. Papadimitriou HM, Swartz SM, Kunz TH (1996) Ontogenic and anatomic variation in mineralization of the wing skeleton of the Mexican free-tailed bat, Tadarida brasiliensis. J Zool (Lond) 240:411–426

    Article  Google Scholar 

  24. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    PubMed  CAS  Google Scholar 

  25. Lafleur J, McAdam-Marx C, Kirkness C, Brixner DI (2008) Clinical risk factors for fracture in postmenopausal osteoporotic women: a review of the recent literature. Ann Pharmacother 42:375–386

    Article  PubMed  Google Scholar 

  26. McCreadie BR, Goldstein SA (2000) Biomechanics of fracture: is bone mineral density sufficient to assess risk? J Bone Miner Res 15:2305–2308

    Article  PubMed  CAS  Google Scholar 

  27. Jepsen KJ, Pennington DE, Lee YL, Warman M, Nadeau J (2001) Bone brittleness varies with genetic background in A/J and C57BL/6 J inbred mice. J Bone Miner Res 16:1854–1862

    Article  PubMed  CAS  Google Scholar 

  28. Jepsen KJ, Akkus OJ, Majeska RJ, Nadeau JH (2003) Hierarchical relationship between bone traits and mechanical properties in inbred mice. Mamm Genome 14:97–104

    Article  PubMed  Google Scholar 

  29. Jepsen KJ, Hu B, Tommasini SM, Courtland HW, Price C, Terranova CJ, Nadeau JH (2007) Genetic randomization reveals functional relationships among morphologic and tissue-quality traits that contribute to bone strength and fragility. Mamm Genome 18:492–507

    Article  PubMed  Google Scholar 

  30. Beamer WG, Donahue LR, Rosen CJ, Baylink DJ (1996) Genetic variability in adult bone density among inbred strains of mice. Bone 18:397–403

    Article  PubMed  CAS  Google Scholar 

  31. Faibish D, Gomes A, Boivin G, Binderman I, Boskey A (2005) Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone 36:6–12

    Article  PubMed  CAS  Google Scholar 

  32. Mayer I, Schneider S, Sydney-Zax M, Deutsch D (1990) Thermal decomposition of developing enamel. Calcif Tissue Int 46:254–257

    Article  PubMed  CAS  Google Scholar 

  33. Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164

    Article  PubMed  CAS  Google Scholar 

  34. Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16:1821–1828

    Article  PubMed  CAS  Google Scholar 

  35. Pleshko N, Boskey A, Mendelsohn R (1991) Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. Biophys J 60:786–793

    PubMed  CAS  Google Scholar 

  36. Gadaleta SJ, Paschalis EP, Betts F, Mendelsohn R, Boskey AL (1996) Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data. Calcif Tissue Int 58:9–16

    Article  PubMed  CAS  Google Scholar 

  37. Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the nu3PO4 domain. Calcif Tissue Int 49:383–388

    Article  PubMed  CAS  Google Scholar 

  38. Boskey A, Mendelsohn R (2005) Infrared analysis of bone in health and disease. J Biomed Opt 10:031102

    Article  PubMed  CAS  Google Scholar 

  39. Boskey A, Mendelsohn R (2005) Infrared spectroscopic characterization of mineralized tissues. Vibrat Spectrosc 38:107–114

    Article  CAS  Google Scholar 

  40. Jepsen KJ, Goldstein SA, Kuhn JL, Schaffler MB, Bonadio J (1996) Type-I collagen mutation compromises the postyield behavior of Mov13 long bone. J Orthop Res 14:493–499

    Article  PubMed  CAS  Google Scholar 

  41. Tommasini SM, Morgan TG, van der Meulen M, Jepsen KJ (2005) Genetic variation in structure–function relationships for the inbred mouse lumbar vertebral body. J Bone Miner Res 20:817–827

    Article  PubMed  Google Scholar 

  42. Gustafson M, Martin R, Gibson V, Storms D, Stover S, Gibeling J, Griffin L (1996) Calcium buffering is required to maintain bone stiffness in saline solution. J Biomech 29:1191–1194

    Article  PubMed  CAS  Google Scholar 

  43. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  44. Nadeau JH, Burrage LC, Restivo J, Pao YH, Churchill G, Hoit BD (2003) Pleiotropy, homeostasis, and functional networks based on assays of cardiovascular traits in genetically randomized populations. Genome Res 13:2082–2091

    Article  PubMed  CAS  Google Scholar 

  45. Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, Boskey AL (2001) In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu4PO4 3- vibration. Biochim Biophys Acta 1527:11–19

    PubMed  CAS  Google Scholar 

  46. Ng AH, Wang SX, Turner CH, Beamer WG, Grynpas MD (2007) Bone quality and bone strength in BXH recombinant inbred mice. Calcif Tissue Int 81:215–223

    Article  PubMed  CAS  Google Scholar 

  47. Pienkowski D, Doers TM, Monier-Faugere MC, Geng Z, Camacho NP, Boskey AL, Malluche HH (1997) Calcitonin alters bone quality in beagle dogs. J Bone Miner Res 12:1936–1943

    Article  PubMed  CAS  Google Scholar 

  48. LeGeros RZ, Kijkowska R, Bautista C, LeGeros JP (1995) Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites. Connect Tissue Res 33:203–209

    Article  PubMed  CAS  Google Scholar 

  49. Doi Y, Iwanaga H, Shibutani T, Moriwaki Y, Iwayama Y (1999) Osteoclastic responses to various calcium phosphates in cell cultures. J Biomed Mater Res 47:424–433

    Article  PubMed  CAS  Google Scholar 

  50. Sheng MH, Baylink DJ, Beamer WG, Donahue LR, Rosen CJ, Lau KH, Wergedal JE (1999) Histomorphometric studies show that bone formation and bone mineral apposition rates are greater in C3H/HeJ (high-density) than C57BL/6 J (low-density) mice during growth. Bone 25:421–429

    Article  PubMed  CAS  Google Scholar 

  51. Richman C, Kutilek S, Miyakoshi N, Srivastava AK, Beamer WG, Donahue LR, Rosen CJ, Wergedal JE, Baylink DJ, Mohan S (2001) Postnatal and pubertal skeletal changes contribute predominantly to the differences in peak bone density between C3H/HeJ and C57BL/6 J mice. J Bone Miner Res 16:386–397

    Article  PubMed  CAS  Google Scholar 

  52. Linkhart TA, Linkhart SG, Kodama Y, Farley JR, Dimai HP, Wright KR, Wergedal JE, Sheng M, Beamer WG, Donahue LR, Rosen CJ, Baylink DJ (1999) Osteoclast formation in bone marrow cultures from two inbred strains of mice with different bone densities. J Bone Miner Res 14:39–46

    Article  PubMed  CAS  Google Scholar 

  53. Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487

    PubMed  CAS  Google Scholar 

  54. Boskey AL, Moore DJ, Amling M, Canalis E, Delany AM (2003) Infrared analysis of the mineral and matrix in bones of osteonectin-null mice and their wildtype controls. J Bone Miner Res 18:1005–1011

    Article  PubMed  CAS  Google Scholar 

  55. Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196

    Article  PubMed  CAS  Google Scholar 

  56. Xu T, Bianco P, Fisher LW, Longenecker G, Smith E, Goldstein S, Bonadio J, Boskey A, Heegaard AM, Sommer B, Satomura K, Dominguez P, Zhao C, Kulkarni AB, Robey PG, Young MF (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20:78–82

    Article  PubMed  CAS  Google Scholar 

  57. Freeman JJ, Wopenka B, Silva MJ, Pasteris JD (2001) Raman spectroscopic detection of changes in bioapatite in mouse femora as a function of age and in vitro fluoride treatment. Calcif Tissue Int 68:156–162

    Article  PubMed  CAS  Google Scholar 

  58. Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL (2004) Bone fragility and collagen cross-links. J Bone Miner Res 19:2000–2004

    Article  PubMed  Google Scholar 

  59. Blank RD, Baldini TH, Kaufman M, Bailey S, Gupta R, Yershov Y, Boskey AL, Coppersmith SN, Demant P, Paschalis EP (2003) Spectroscopically determined collagen Pyr/deH-DHLNL cross-link ratio and crystallinity indices differ markedly in recombinant congenic mice with divergent calculated bone tissue strength. Connect Tissue Res 44:134–142

    Article  PubMed  CAS  Google Scholar 

  60. Amblard D, Lafage-Proust MH, Chamson A, Rattner A, Collet P, Alexandre C, Vico L (2003) Lower bone cellular activities in male and female mature C3H/HeJ mice are associated with higher bone mass and different pyridinium crosslink profiles compared to C57BL/6J mice. J Bone Miner Metab 21:377–387

    Article  PubMed  CAS  Google Scholar 

  61. Boskey AL, Marks SC Jr (1985) Mineral and matrix alterations in the bones of incisors-absent (ia/ia) osteopetrotic rats. Calcif Tissue Int 37:287–292

    Article  PubMed  CAS  Google Scholar 

  62. Shapses SA, Cifuentes M, Spevak L, Chowdhury H, Brittingham J, Boskey AL, Denhardt DT (2003) Osteopontin facilitates bone resorption, decreasing bone mineral crystallinity and content during calcium deficiency. Calcif Tissue Int 73:86–92

    Article  PubMed  CAS  Google Scholar 

  63. Camacho NP, Rimnac CM, Meyer RA Jr, Doty S, Boskey AL (1995) Effect of abnormal mineralization on the mechanical behavior of X-linked hypophosphatemic mice femora. Bone 17:271–278

    Article  PubMed  CAS  Google Scholar 

  64. Paschalis EP, Burr DB, Mendelsohn R, Hock JM, Boskey AL (2003) Bone mineral and collagen quality in humeri of ovariectomized cynomolgus monkeys given rhPTH(1–34) for 18 months. J Bone Miner Res 18:769–775

    Article  PubMed  CAS  Google Scholar 

  65. Ruppel ME, Burr DB, Miller LM (2006) Chemical makeup of microdamaged bone differs from undamaged bone. Bone 39:318–324

    Article  PubMed  CAS  Google Scholar 

  66. Silva MJ, Brodt MD, Fan Z, Rho JY (2004) Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse SAMP6. J Biomech 37:1639–1646

    Article  PubMed  Google Scholar 

  67. Akhter MP, Fan Z, Rho JY (2004) Bone intrinsic material properties in three inbred mouse strains. Calcif Tissue Int 75:416–420

    Article  PubMed  CAS  Google Scholar 

  68. Miller LM, Little W, Schirmer A, Sheik F, Busa B, Judex S (2007) Accretion of bone quantity and quality in the developing mouse skeleton. J Bone Miner Res 22:1037–1045

    Article  PubMed  Google Scholar 

  69. Wang X, Sudhaker Rao D, Ajdelsztajn L, Ciarelli TE, Lavernia EJ, Fyhrie DP (2007) Human iliac crest cancellous bone elastic modulus and hardness differ with bone formation rate per bone surface but not by existence of prevalent vertebral fracture. J Biomed Mater Res B Appl Biomater 85:68–77

    Google Scholar 

  70. Wang XD, Masilamani NS, Mabrey JD, Alder ME, Agrawal CM (1998) Changes in the fracture toughness of bone may not be reflected in its mineral density, porosity, and tensile properties. Bone 23:67–72

    Article  PubMed  CAS  Google Scholar 

  71. Yershov Y, Baldini TH, Villagomez S, Young T, Martin ML, Bockman RS, Peterson MG, Blank RD (2001) Bone strength and related traits in HcB/Dem recombinant congenic mice. J Bone Miner Res 16:992–1003

    Article  PubMed  CAS  Google Scholar 

  72. Ramasamy JG, Akkus O (2007) Local variations in the micromechanical properties of mouse femur: the involvement of collagen fiber orientation and mineralization. J Biomech 40:910–918

    Article  PubMed  CAS  Google Scholar 

  73. Tommasini SM, Nasser P, Schaffler MB, Jepsen KJ (2005) Relationship between bone morphology and bone quality in male tibias: implications for stress fracture risk. J Bone Miner Res 20:1372–1380

    Article  PubMed  Google Scholar 

  74. Keller TS, Mao Z, Spengler DM (1990) Young’s modulus, bending strength, and tissue physical properties of human compact bone. J Orthop Res 8:592–603

    Article  PubMed  CAS  Google Scholar 

  75. Currey JD (1980) Mechanical properties of mollusc shell. Symp Soc Exp Biol 34:75–97

    PubMed  CAS  Google Scholar 

  76. Bonfield W, Clark EA (1973) Elastic deformation of compact bone. J Mater Sci 8:1590–1594

    Article  CAS  Google Scholar 

  77. Tommasini SM, Nasser P, Jepsen KJ (2007) Sexual dimorphism affects tibia size and shape but not tissue-level mechanical properties. Bone 40:498–505

    Article  PubMed  Google Scholar 

  78. Harvey KB, Drummer TD, Donahue SW (2005) The tensile strength of black bear (Ursus americanus) cortical bone is not compromised with aging despite annual periods of hibernation. J Biomech 38:2143–2150

    Article  PubMed  Google Scholar 

  79. Harvey KB, Donahue SW (2004) Bending properties, porosity, and ash fraction of black bear (Ursus americanus) cortical bone are not compromised with aging despite annual periods of disuse. J Biomech 37:1513–1520

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Damien Laudier for assistance with plastic embedding and the National Institutes of Health (NIH) for funding support (AR44927, AR046121). FTIR images were obtained using the NIH-sponsored Core Center (AR046121) at the Hospital for Special Surgery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl J. Jepsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Courtland, HW., Nasser, P., Goldstone, A.B. et al. Fourier Transform Infrared Imaging Microspectroscopy and Tissue-Level Mechanical Testing Reveal Intraspecies Variation in Mouse Bone Mineral and Matrix Composition. Calcif Tissue Int 83, 342–353 (2008). https://doi.org/10.1007/s00223-008-9176-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-008-9176-8

Keywords

Navigation