Skip to main content
Log in

Contribution of Mineral to Bone Structural Behavior and Tissue Mechanical Properties

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone geometry and tissue material properties jointly govern whole-bone structural behavior. While the role of geometry in structural behavior is well characterized, the contribution of the tissue material properties is less clear, partially due to the multiple tissue constituents and hierarchical levels at which these properties can be characterized. Our objective was to elucidate the contribution of the mineral phase to bone mechanical properties across multiple length scales, from the tissue material level to the structural level. Vitamin D and calcium deficiency in 6-week-old male rats was employed as a model of reduced mineral content with minimal collagen changes. The structural properties of the humeri were measured in three-point bending and related to the mineral content and geometry from microcomputed tomography. Whole-cortex and local bone tissue properties were examined with infrared (IR) spectroscopy, Raman spectroscopy, and nanoindentation to understand the role of altered mineral content on the constituent material behavior. Structural stiffness (−47%) and strength (−50%) were reduced in vitamin D-deficient (−D) humeri relative to controls. Moment of inertia (−38%), tissue mineral density (TMD, −9%), periosteal mineralization (−28%), and IR mineral:matrix ratio (−19%) were reduced in −D cortices. Thus, both decreased tissue mineral content and changes in cortical geometry contributed to impaired skeletal load-bearing function. In fact, 97% of the variability in humeral strength was explained by moment of inertia, TMD, and IR mineral:matrix ratio. The strong relationships between structural properties and cortical material composition demonstrate a critical role of the microscale material behavior in skeletal load-bearing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van der Meulen MC, Jepsen KJ, Mikic B (2001) Understanding bone strength: size isn’t everything. Bone 29:101–104

    Article  PubMed  Google Scholar 

  2. Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694

    Article  CAS  PubMed  Google Scholar 

  3. Nuzzo S, Peyrin F, Cloetens P, Baruchel J, Boivin G (2002) Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography. Med Phys 29:2672–2681

    Article  PubMed  Google Scholar 

  4. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tissue Int 61:487–492

    Article  CAS  PubMed  Google Scholar 

  5. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int 61:480–486

    Article  CAS  PubMed  Google Scholar 

  6. Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487

    CAS  PubMed  Google Scholar 

  7. Jepsen KJ, Schaffler MB, Kuhn JL, Goulet RW, Bonadio J, Goldstein SA (1997) Type I collagen mutation alters the strength and fatigue behavior of Mov13 cortical tissue. J Biomech 30:1141–1147

    Article  CAS  PubMed  Google Scholar 

  8. Silva MJ, Brodt MD, Fan Z, Rho JY (2004) Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse SAMP6. J Biomech 37:1639–1646

    Article  PubMed  Google Scholar 

  9. Boskey A, Mendelsohn R (2005) Infrared analysis of bone in health and disease. J Biomed Opt 10:031102

    Article  PubMed  Google Scholar 

  10. Faibish D, Ott SM, Boskey AL (2006) Mineral changes in osteoporosis: a review. Clin Orthop Relat Res 443:28–38

    Article  PubMed  Google Scholar 

  11. Bourne BC, van der Meulen MC (2004) Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. J Biomech 37:613–621

    Article  PubMed  Google Scholar 

  12. Jaasma MJ, Bayraktar HH, Niebur GL, Keaveny TM (2002) Biomechanical effects of intraspecimen variations in tissue modulus for trabecular bone. J Biomech 35:237–246

    Article  PubMed  Google Scholar 

  13. Currey JD (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 21:131–139

    Article  CAS  PubMed  Google Scholar 

  14. Burstein AH, Zika JM, Heiple KG, Klein L (1975) Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Joint Surg Am 57:956–961

    CAS  PubMed  Google Scholar 

  15. Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453

    Article  CAS  PubMed  Google Scholar 

  16. Hengsberger S, Ammann P, Legros B, Rizzoli R, Zysset P (2005) Intrinsic bone tissue properties in adult rat vertebrae: modulation by dietary protein. Bone 36:134–141

    Article  CAS  PubMed  Google Scholar 

  17. Brennan TC, Rizzoli R, Ammann P (2009) Selective modification of bone quality by PTH, pamidronate, or raloxifene. J Bone Miner Res 24:800–808

    Article  CAS  PubMed  Google Scholar 

  18. Baylink D, Stauffer M, Wergedal J, Rich C (1970) Formation, mineralization, and resorption of bone in vitamin D-deficient rats. J Clin Invest 49:1122–1134

    Article  CAS  PubMed  Google Scholar 

  19. Donnelly R, Bockman R, DiCarlo E, Betts F, Boskey A (1993) The effect of gallium nitrate on healing of vitamin D- and phosphate-deficient rickets in the immature rat. Calcif Tissue Int 53:400–410

    CAS  PubMed  Google Scholar 

  20. Einhorn TA, Bonnarens F, Burstein AH (1986) The contributions of dietary protein and mineral to the healing of experimental fractures. A biomechanical study. J Bone Joint Surg Am 68:1389–1395

    CAS  PubMed  Google Scholar 

  21. Bielaczyc AR, Golebiewska M, Citko A, Rogowski F (1997) Concentration of the cross-linked carboxyterminal telopeptide of type I collagen in serum of young growing rats fed a low calcium and vitamin D-deficient diet. Eur J Clin Chem Clin Biochem 35:915–918

    CAS  PubMed  Google Scholar 

  22. Kaastad TS, Reikeras O, Halvorsen V, Falch JA, Obrant KJ, Nordsletten L (2001) Vitamin D deficiency and ovariectomy reduced the strength of the femoral neck in rats. Calcif Tissue Int 69:102–108

    Article  CAS  PubMed  Google Scholar 

  23. Pansini AR, Christakos S (1984) Vitamin D-dependent calcium-binding protein in rat kidney. Purification and physiocochemical and immunological characterization. J Biol Chem 259:9735–9741

    CAS  PubMed  Google Scholar 

  24. Jepsen KJ, Goldstein SA, Kuhn JL, Schaffler MB, Bonadio J (1996) Type-I collagen mutation compromises the post-yield behavior of Mov13 long bone. J Orthop Res 14:493–499

    Article  CAS  PubMed  Google Scholar 

  25. Torzilli PA, Takebe K, Burstein AH, Heiple KG (1981) Structural properties of immature canine bone. J Biomech Eng 103:232–238

    Article  CAS  PubMed  Google Scholar 

  26. Young WC (1989) Roark’s formulas for stress and strain. McGraw-Hill, New York

    Google Scholar 

  27. Fritton JC, Myers ER, Wright TM, van der Meulen MC (2005) Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia. Bone 36:1030–1038

    Article  CAS  PubMed  Google Scholar 

  28. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybernet SMC 9:62–66

    Article  Google Scholar 

  29. Carter DR, Caler WE, Spengler DM, Frankel VH (1981) Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. Acta Orthop Scand 52:481–490

    Article  CAS  PubMed  Google Scholar 

  30. Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  31. Faibish D, Gomes A, Boivin G, Binderman I, Boskey A (2005) Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone 36:6–12

    Article  CAS  PubMed  Google Scholar 

  32. Donnelly E, Baker SP, Boskey AL, van der Meulen MCH (2006) Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J Biomed Mater Res A 77:426–435

    PubMed  Google Scholar 

  33. Donnelly E, Boskey AL, Baker SP, van der Meulen MC (2010) Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A 92:1048–1056

    PubMed  Google Scholar 

  34. Oliver WC, Pharr GM (1992) Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  CAS  Google Scholar 

  35. Kazanci M, Wagner HD, Manjubala NI, Gupta HS, Paschalis E, Roschger P, Fratzl P (2007) Raman imaging of two orthogonal planes within cortical bone. Bone 41:456–461

    Article  CAS  PubMed  Google Scholar 

  36. Donnelly E, Williams RM, Downs SA, Dickinson ME, Baker SP, van der Meulen MCH (2006) Quasistatic and dynamic nanomechanical properties of cancellous bone tissue relate to collagen content and organization. J Mater Res 21:2106–2117

    Article  CAS  Google Scholar 

  37. Williams RM, Zipfel WR, Webb WW (2005) Interpreting second-harmonic generation images of collagen I fibrils. Biophys J 88:1377–1386

    Article  CAS  PubMed  Google Scholar 

  38. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    Article  CAS  PubMed  Google Scholar 

  39. Weinstein RS, Underwood JL, Hutson MS, DeLuca HF (1984) Bone histomorphometry in vitamin D-deficient rats infused with calcium and phosphorus. Am J Physiol Endocrinol Metab 246:E499–E505

    CAS  Google Scholar 

  40. Stauffer M, Baylink D, Wergedal J, Rich C (1973) Decreased bone formation, mineralization, and enhanced resorption in calcium-deficient rats. Am J Physiol 225:269–276

    CAS  PubMed  Google Scholar 

  41. Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, Demay MB (1999) Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140:4982–4987

    Article  CAS  PubMed  Google Scholar 

  42. Brommage R, DeLuca HF (1984) Vitamin D-deficient rats produce reduced quantities of a nutritionally adequate milk. Am J Physiol Endocrinol Metab 246:E221–E226

    CAS  Google Scholar 

  43. Weinstein RS, Wan C, Liu Q, Wang Y, Almeida M, O’Brien CA, Thostenson J, Roberson PK, Boskey AL, Clemens TL, Manolagas SC (2010) Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell 9:147–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Dr. Stephen Doty and Jeanane Diouri for assistance with tissue processing and histology, Dr. Jacqueline Cole for assistance with mechanical testing and statistical analyses, Dr. Sylvia Christakos for advice on the study design, Hayat Taleb for X-ray diffraction and infrared spectroscopic analyses, and Dr. Junghyun Cho and Andy Zhang for help with nanoindentation. Funding was provided by the Cornell Center for Materials Research (NSF DMR 0520404), the National Institutes of Health (R01 AR053571, P30 AR046121), and the American Association of University Women Educational Foundation (Selected Professions Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjolein C. H. van der Meulen.

Additional information

The first two authors contributed equally to this study.

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnelly, E., Chen, D.X., Boskey, A.L. et al. Contribution of Mineral to Bone Structural Behavior and Tissue Mechanical Properties. Calcif Tissue Int 87, 450–460 (2010). https://doi.org/10.1007/s00223-010-9404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9404-x

Keywords

Navigation