Skip to main content
Log in

Effects of Nicotine Administration and Nicotine Cessation on Bone Histomorphometry and Bone Biomarkers in Sprague–Dawley Male Rats

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Nicotine is a major alkaloid of tobacco, which can increase free radical formation, leading to osteoporosis. The effects of nicotine administration and cessation on bone histomorphometry and biomarkers were studied in 28 Sprague–Dawley male rats. Rats aged 3 months and weighing 250–300 g were divided into four groups: control (C, normal saline for 4 months), nicotine for 2 months (N2), nicotine for 4 months (N4), and nicotine cessation (NC). The NC group was given nicotine for the first 2 months and then allowed to recover for the following 2 months without nicotine. Histomorphometric analysis was done using an image analyzer. ELISA kits were used to measure serum osteocalcin (bone formation marker) and pyridinoline (PYD, bone resorption marker) levels at month 0, month 2, and month 4. All test groups showed a significant decrease in BV/TV, Ob.S/BS, dLS/BS, MAR, BFR/BS, and osteocalcin levels and an increase in sLS/BS and PYD levels compared to group C. No significant differences were observed in all parameters measured among the test groups, except for MAR and BFR/BS. In conclusion, nicotine administration at a dose of 7 mg/kg for 2 and 4 months has detrimental effects on bone metabolism. Nicotine administration at 7 mg/kg for 2 months is sufficient to produce significant effects on bone histomorphometric parameters and biomarkers. In addition, prolonging the treatment for another 2 months did not show any significant differences. Cessation of nicotine for 2 months did not reverse the effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hoffmann D, Hoffmann I, El-Bayoumy K (2001) The less harmful cigarette: a controversial issue. A tribute to Ernst L. Wynder. Chem Res Toxicol 14:767–790

    Article  CAS  PubMed  Google Scholar 

  2. Wynder EL, Hoffmann D (1979) Tobacco and health. A societal challenge. N Engl J Med 300:894–903

    Article  CAS  PubMed  Google Scholar 

  3. Domino EF (1998) Tobacco smoking and nicotine neuropsychopharmacology: some future research direction. Neuropsychopharmacology 18:456–468

    Article  CAS  PubMed  Google Scholar 

  4. Benowitz NL (1996) Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pharmacol Toxicol 36:597–613

    Article  CAS  PubMed  Google Scholar 

  5. Broulik PD, Rosenkrancova J, Ruzicka P, Sedlacek R, Kurcova I (2007) The effect of chronic nicotine administration on bone mineral content and bone strength in normal and castrated male rats. Horm Metab Res 39:20–24

    Article  CAS  PubMed  Google Scholar 

  6. Riesenfeld A (1985) Growth-depressing effects of alcohol and nicotine in two strains of rats. Acta Anat 122:18–24

    Article  CAS  PubMed  Google Scholar 

  7. Broulik PD, Jarab J (1993) The effect of chronic nicotine administration on bone mineral content in mice. Horm Metab Res 25:219–221

    Article  CAS  PubMed  Google Scholar 

  8. Yee JA, Yan L, Cullen DM, Akhter MP, Recker RR (1999) Nicotine inhibits osteoblast differentiation in cultures of neonatal rat calvarial cells. J Bone Miner Res 14(Suppl 1):S239

    Google Scholar 

  9. Henemyre CL, Scales DK, Hokett SD, Cuenin MF, Peacock ME, Parker MH, Brewer PD, Chuang AH (2003) Nicotines stimulates osteoclast resorption in a porcine marrow cell model. J Periondontol 74:1440–1446

    Article  CAS  Google Scholar 

  10. Kamer AR, El-Ghorab N, Marzec N, Margarone JE 3rd, Dziak R (2006) Nicotine induced proliferation and cytokine release in osteoblastic cells. Int J Mol Med 17:121–127

    CAS  PubMed  Google Scholar 

  11. Zheng LW, Ma LK, Cheung LK (2007) Effects of nicotine on mandibular distraction osteogenesis: a radiological and immunohistochemical study. Eur Cell Mater 13(Suppl 2):54

    Google Scholar 

  12. Fernández-Tresguerres-Hernández-Gil I, Alobera-Gracia MA, del-Canto-Pingarrón M, Blanco-Jerez L (2006) Physiological bases of bone regeneration II. The remodeling process. Med Oral 11:E151–E157

    Google Scholar 

  13. Burns DK, Kumar V (1997) Basic pathology. In: Kumar V, Cotran RS, Robbins SL (eds) The musculoskeletal system. WB Saunders, Philadelphia, pp 667–671

    Google Scholar 

  14. Oda H, Matsuzaki H, Tokuhashi Y, Wakabayasi K, Uematsu Y, Iwahashi M (2004) Degeneration of intervertebral discs due to smoking: experimental assessment in a rat-smoking model. J Orthop Sci 9:135–141

    Article  CAS  PubMed  Google Scholar 

  15. Akmal M, Kesani A, Anand B, Singh A, Wiseman M, Goodship A (2004) Effect of nicotine on spinal disc cells: a cellular mechanism for disc degeneration. Spine 29:568–575

    Article  PubMed  Google Scholar 

  16. Cesar-Neto JB, Benatti BB, Manzi FR, Sallum EA, Sallum AW, Nociti FH Jr (2005) The influence of cigarette smoke inhalation on bone density. A radiographic study in rats. Braz Oral Res 19:47–51

    Article  PubMed  Google Scholar 

  17. Szulc P, Garnero B, Claustraf F, Marchand F, Duboeuf F, Delmas PD (2002) Increased bone resorption in moderate smokers with low body weight: the minos story. J Clin Endocrinol Metab 87:666–674

    Article  CAS  PubMed  Google Scholar 

  18. Kiel DP, Zhang Y, Hannan MT, Anderson JJ, Baron JA, Felson DT (1996) The effect of smoking at different life stages on bone mineral density in elderly men and women. Osteoporos Int 6:240–248

    Article  CAS  PubMed  Google Scholar 

  19. Egger P, Duggleby S, Hobbs R, Fall C, Cooper C (1996) Cigarette smoking and bone mineral density in the elderly. J Epidemiol Community Health 50:47–50

    Article  CAS  PubMed  Google Scholar 

  20. Vogel JM, Davis JW, Nomura A, Wasnich RD, Ross PD (1997) The effects of smoking on bone mass and the rates of bone loss among elderly Japanese-American men. J Bone Miner Res 12:1495–1501

    Article  CAS  PubMed  Google Scholar 

  21. Cesar-Neto JB, Duarte PM, Sallum EA, Barbieri D, Moreno H Jr, Nociti FH Jr (2003) A comparative study on the effect of nicotine administration and cigarette smoke inhalation on bone healing around titanium implants. J Periodontal 74:1454–1459

    Article  CAS  Google Scholar 

  22. Difford J (1974) A simplified method for the preparation of methyl methacrylate embedding medium. Med Lab Tech 31:79–81

    CAS  Google Scholar 

  23. Von Kossa J (1974) Nachweis von Kalk. Beitrage zur pathologischen Anatomie und zur allgemeinen. Pathologie 29:163

    Google Scholar 

  24. Weibel ER, Kistler GS, Scherle WF (1966) Practical stereological methods for morphometric cytology. J Cell Biol 30:23–38

    Article  CAS  PubMed  Google Scholar 

  25. Freere RH, Weibel ER (1967) Stereologic techniques in microscopy. J R Microsc Soc 87:25–34

    Google Scholar 

  26. Baldock PA, Morris HA, Need AG, Moore RJ, Durbridge TC (1998) Variation in the short-term changes in bone cell activity in three regions of the distal femur immediately following ovariectomy. J Bone Miner Res 13:1451–1457

    Article  CAS  PubMed  Google Scholar 

  27. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. Report of the ASMBR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  28. Norazlina M, Nik-Farideh YMK, Arizi A, Faisal A, Ima-Nirwana S (2004) Effects of nicotine on bone resorbing cytokines in male rats. Int Med J 3:1–8. www.e-imj.com/Vol3-No2/Vol3-No2-B10.htm

    Google Scholar 

  29. Ima-Nirwana S, Cheng CT, Norazlina M (2005) Effects of nicotine on bone mineral density and calcium homeostasis in male Sprague–Dawley rats. Curr Top Pharmacol 9:125–129

    CAS  Google Scholar 

  30. Hudelmaier M, Kollestedt A, Lochmuller EM, Kuhn V, Eckstein F, Link TM (2005) Gender differences in trabecular bone architecture of the distal radius assessed with magnetic resonance imaging and implications for mechanical competence. Osteoporos Int 16:1124–1133

    Article  PubMed  Google Scholar 

  31. Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK (2010) Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res. doi:10.1002/jbmr.171

  32. Riggs BL, Wahner HW, Dunn WL, Mazess RB, Offord KP, Melton LJ III (1981) Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest 67:328–335

    Article  CAS  PubMed  Google Scholar 

  33. Aaron JE, Makins NB, Sagreiya K (1987) The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop Relat Res 215:260–271

    PubMed  Google Scholar 

  34. Wakamatsu E, Sissons HA (1969) The cancellous bone of the iliac crest. Calcif Tissue Res 4:147–161

    Article  CAS  PubMed  Google Scholar 

  35. Parfttt AM, Mathews CHE, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationship between surface, volume and thickness of iliac trabecular bone in aging and in osteoporosis: implication for microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–1409

    Article  Google Scholar 

  36. Wetscher GJ, Bagchi M, Bagchi D, Perdikis G, Hinder PR, Glaser K, Hinder RA (1995) Free radical production in nicotine treated pancreatic tissue. Free Radic Biol Med 18:877–882

    Article  CAS  PubMed  Google Scholar 

  37. Kalpana C, Menon VP (2004) Protective effect of circumin on circulatory lipid peroxidation and antioxidant status during nicotine-induced toxicity. Toxicol Mech Methods 14:339–343

    Article  CAS  PubMed  Google Scholar 

  38. Crowley-Weber CL, Dvorakova K, Crowley C, Berstein H, Berstein C, Garewal H, Payne CM (2003) Nicotine increases oxidative stress, activates NF-κB and GRP78, induces apoptosis and sensitizes cells to genotoxic/xenobiotic stresses by a multiple stress inducer, deoxycholate: relevance to colon carcinogenesis. Chem Biol Interact 145:53–66

    Article  CAS  PubMed  Google Scholar 

  39. Jimi E, Ghosh S (2005) Role of nuclear factor-kappaB in the immune system and bone. Immunol Rev 208:80–87

    Article  CAS  PubMed  Google Scholar 

  40. Hermizi H, Faizah O, Ima Nirwana S, Ahmad Nazrun S, Luke DA, Norazlina M (2007) Nicotine impaired bone histomorphometric parameters and bone remodeling biomarkers in Sprague–Dawley male rats. Ann Microsc 7:10–24

    Google Scholar 

  41. Rothem DE, Rothem L, Soudry M, Dahan A, Eliakim R (2009) Nicotine modulates bone metabolism-associated gene expression in osteoblast cells. J Bone Miner Metab 27:555–561

    Article  CAS  PubMed  Google Scholar 

  42. Nakayama Y, Mezawa M, Araki S, Sasaki T, Wang S, Han J, Li X, Takai H, Ogata Y (2009) Nicotine suppresses bone sialoprotein gene expression. J Periodontal Res 44:657–663

    Article  CAS  PubMed  Google Scholar 

  43. Nociti FH Jr, Noguira-Filho GR, Tramontina VA, Naval Machado MA, Barros SP, Sallum EA, Sallum AW (2001) Histometric evaluation of the effect of nicotine administration on periodontal breakdown: an in vivo study. J Periodontal Res 36:361–366

    Article  CAS  PubMed  Google Scholar 

  44. Hapidin H, Othman F, Soelaiman IN, Shuid AN, Luke DA, Mohamed (2007) Negative effects of nicotine on bone-resorbing cytokines and bone histomorphometric parameters in male rats. J Bone Miner Metab 25:93–98

    Article  CAS  PubMed  Google Scholar 

  45. Hermizi H, Faizah O, Ima-Nirwana S, Ahmad Nazrun S, Norazlina M (2009) Beneficial effects of tocotrienol and tocopherol on bone histomorphometric parameters in Sprague–Dawley male rats after nicotine cessation. Calcif Tissue Int 84:65–74

    Article  CAS  PubMed  Google Scholar 

  46. Fukuda S, Matsuoka O (1979) Maturation process of secondary ossification centers in the rat and assessment of bone age. Jikken Dobutsu (Tokyo) 28:1–9

    CAS  Google Scholar 

  47. Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–191

    Article  CAS  PubMed  Google Scholar 

  48. Riebel GD, Boden SD, Whitesides TE, Hutton WC (1995) The effect of nicotine on incorporation of cancellous bone graft in an animal model. Spine 20:2198–2202

    Article  CAS  PubMed  Google Scholar 

  49. Wing KJ, Fisher GC, O’Connell JX, Wing PC (2000) Stopping nicotine exposure before surgery: the effect on spinal fusion in rabbit model. Spine 25:30

    Article  CAS  PubMed  Google Scholar 

  50. Krall EA, Dawson-Hughnes B, Garvey AJ, Garcia RI (1997) Smoking, smoking cessation, and tooth loss. J Dent Res 76:1653–1659

    Article  CAS  PubMed  Google Scholar 

  51. Hoidrup S, Prescott E, Sorensen T, Gottschau A, Lauritzen JB (2000) Tobacco smoking and risk of hip fracture in men and women. Int Epidemiol Assoc 29:253–259

    Article  CAS  Google Scholar 

  52. Cornuz J, Feskanich D, Willett WC, Colditz GA (1999) Smoking, smoking cessation, and risk of hip fracture in women. Am J Med 106:311–314

    Article  CAS  PubMed  Google Scholar 

  53. Oncken C, Prestwood K, Kleppinger A, Wang Y, Cooney J, Raizs L (2006) Impact of smoking cessation on bone mineral density in postmenopausal women. J Womens Health 15:1141–1150

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Science, Technology, and Innovation for funding this research under IRPA grant 06-02-02-051-EA243. We also express our gratitude to Mr. Rafizul Mohd Yusoff, Mr. Arizi Aziz, Mr. Faisal Ariffin, Ms. Hairi Ghazalli, Ms. Mazliadiyana Mazlan, and Ms. Azizah Osman for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermizi Hapidin.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hapidin, H., Othman, F., Soelaiman, I.N. et al. Effects of Nicotine Administration and Nicotine Cessation on Bone Histomorphometry and Bone Biomarkers in Sprague–Dawley Male Rats. Calcif Tissue Int 88, 41–47 (2011). https://doi.org/10.1007/s00223-010-9426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9426-4

Keywords

Navigation