Skip to main content

Advertisement

Log in

High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past?

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Historical sea level fluctuations have influenced the genetic structure and evolutionary history of marine species and examining widespread species across their species’ ranges may elucidate some of these effects. Chlorurus sordidus is a common and widespread parrotfish found on coral reefs throughout the Indo-central Pacific. We used phylogenetic, phylogeographic, and cladistic analyses to examine the genetic composition and population structure of this species across most of its latitudinal range limits. We sequenced 354 bp of the mitochondrial control region I in 185 individuals from nine populations. Populations of C. sordidus displayed high levels of genetic diversity, similar to those recorded for widespread pelagic fish species, but much greater nucleotide diversity values than those previously recorded for other demersal reef fishes. Both phylogenetic and phylogeographic analyses detected strong genetic subdivision at the largest spatial scale (i.e. among oceans). The Pacific Ocean was characterised by weak population genetic structure. Separation of the Hawaiian location from other Pacific and West Indian Ocean sites was evident in phylogenetic analyses, but not from analysis of molecular variance. NCA and isolation-by-distance tests suggested that the genetic structure of this species was the result of multiple contemporary and historical processes, including long-distance colonisation and range expansion arising from fluctuating sea levels, limited current gene flow, and isolation by distance. This pattern is to be expected when historically fragmented populations come into secondary contact. We suggest the patterns of population genetic structure recorded in C. sordidus are caused by large local population sizes, high gene flow, and a recent history of repeated fragmentation and remixing of populations resulting from fluctuating sea levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4A–D

Similar content being viewed by others

References

  • Arbogast B, Kenagy GL (2001) Comparative phylogeography as an integrative approach to historical biogeography. J Biogeogr 28:819–825

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography. The history and formation of species. Harvard University Press, Cambridge, Mass.

  • Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2000) Biogeography: a marine Wallace’s line? Nature 406:692–693

    Article  CAS  PubMed  Google Scholar 

  • Bellwood D (1994) A phylogenetic study of the parrotfish family Scaridae (Pisces: Labroidei) with a revision of the genera. Rec Aust Mus Suppl 20:1–86

    Google Scholar 

  • Benzie JAH (1992) Review of the genetics, dispersal and recruitment of crown-of-thorns starfish (Acanthaster plancii). Aust J Mar Freshw Res 43:597–610

    Google Scholar 

  • Benzie JAH (1998) Genetic structure of marine organisms and SE Asian biogeography. Backhuys, Leiden

  • Benzie JAH (1999) Genetic structure of coral reef organisms: ghost of dispersal past (1). Am Zool 39:131–145

    Google Scholar 

  • Bernardi G, Holbrook SJ, Schmitt RJ (2001) Gene flow at three spatial scales in a coral reef fish, the three-spot dascyllus, Dascyllus trimaculatus. Mar Biol 38:457–465

    Article  Google Scholar 

  • Bernardi G, Holbrook SJ, Schmitt RJ, Crane NL (2003) Genetic evidence for two distinct clades in a French Polynesian population of the coral reef three-spot damselfish Dascyllus trimaculatus. Mar Biol 143:485–490

    Google Scholar 

  • Bowen BW, Avise JC (1990) Genetic structure of Atlantic and Gulf of Mexico populations of sea bass, menhaden, and sturgeon: influence of zoogeographic factors and life-history patterns. Mar Biol 107:371–381

    Google Scholar 

  • Bowen BW, Grant WS (1997) Phylogeography of the sardines (Sardinops spp): assessing biogeographic models and population histories in temperate upwelling zones. Evolution 51:1601–1609

    Google Scholar 

  • Bowen BW, Bass AL, Rocha WS, Grant WS, Robertson DR (2001) Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale. Evolution 55:1029–1039

    PubMed  Google Scholar 

  • Briggs JC (1999) Modes of speciation: marine Indo-west Pacific. Bull Mar Sci 65:645–656

    Google Scholar 

  • Cabot (1997) Eyeball sequence editor v3.1s. University of Rochester, New York

  • Chen L-S (1999) Ontogenetic development in post settlement scarids (Pisces: Scaridae). PhD thesis, James Cook University, Townsville, Australia

  • Choat JH, Bellwood DR (1985) Interactions amongst herbivorous fishes on a coral reef: influence of spatial variation. Mar Biol 75:221–234

    Google Scholar 

  • Choat JH, Randall JE (1986) A review of the parrotfishes (family Scaridae) of the Great Barrier Reef of Australia with a description of a new species. Rec Aust Mus 38:175–228

    Google Scholar 

  • Choat JH, Robertson DR (1975) Protogynous hermaphroditism in fishes of the family Scaridae In: Reinboth R (ed) Intersexuality in the animal kingdom. Springer, Berlin Heidelberg New York, pp 263–283

    Google Scholar 

  • Choat JH, Robertson DR (2002) Age based studies on coral reef fishes. In: Sale PF (ed) Coral reef fishes: diversity and dynamics in a complex system. Academic Press, San Diego, Calif., pp 57–80

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    CAS  PubMed  Google Scholar 

  • Crandall KA, Templeton AR, Sing CF (1994) Intraspecific phylogenetics: problems and solutions. In: Scotland RW, Siebert DJ, Williams DM (eds) Models in phylogeny reconstruction. Clarendon Press, Oxford, pp 273–297

  • Doherty PJ, Planes S, Mather P (1995) Gene flow and larval duration in seven species of fish from the Great Barrier Reef. Ecology 76:2373–2387

    Google Scholar 

  • Duda TFJ, Palumbi SR (1999) Population structure of the black tiger prawn Penaeus monodon, among western Indian Ocean and western Pacific populations. Mar Biol 134:705–710

    Article  Google Scholar 

  • Dudgeon CL, Gust N, Blair D (2000) No apparent genetic basis to demographic differences in scarid fishes across the continental shelf of the Great Barrier Reef. Mar Biol 137:1059–1066

    Article  Google Scholar 

  • Durand JD, Templeton AR, Guinand B, Imsirdou A, Bouvet Y (1999) Nested clade and phylogeographic analyses of the Chub, Leuciscus cephalus (Teleostei, Cyprinidae), in Greece: implications for Balkan Peninsula biogeography. Mol Phylogenet Evol 13:566–580

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JE (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Fleminger A (1986) The pleistocene equatorial barrier between the Indian and Pacific Oceans and a likely cause for Wallace’s line. In: Pierrot-Bults AC, Spoel S van der, Zahuranec BJ, Johnson RK (eds) Pelagic biogeography. UNESCO, tech paper, Mar Sci 49:84–97

  • Gharrett A, Gray A, Brykov V (2001) Phylogeographic analysis of mitochondrial DNA variation in Alaskan coho salmon, Oncorhynchus kisutch. Fish Bull 99:528–544

    Google Scholar 

  • Gordon AL (1998) Coelacanth populations may go with the flow. Nature 395:634

    Article  PubMed  Google Scholar 

  • Gordon AL, Fine R (1996) Pathways of water between the Pacific and Indian Oceans in the Indonesian seas. Nature 379:146–149

    Article  Google Scholar 

  • Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Heredity 89:415–426

    Article  Google Scholar 

  • Gust N, Choat JH, McCormick M (2001) Spatial variability in reef fish distribution, abundance, size and biomass: a multi-scale analysis. Mar Ecol Prog Ser 214:237–251

    Google Scholar 

  • Gust N, Choat JH, Ackerman JL (2002) Demographic plasticity in tropical reef fishes. Mar Biol 140:1039–1051

    Article  Google Scholar 

  • Hellberg ME (1994) Relationship between inferred levels of gene flow and geographic distance in a philopatric coral, Balanophyllia elegans. Evolution 48:1829–1854

    Google Scholar 

  • Johnson J, Jordan S (2000) Phylogenetic divergence in leatherside chub (Gila copei) inferred from mitochondrial cytochrome b sequences. Mol Ecol 9:1029–1035

    Article  PubMed  Google Scholar 

  • Johnson MS, Black R (1998) Effects of isolation by distance and geographical discontinuity on genetic subdivision of Littoraria cingulata. Mar Biol 132:295–303

    Article  Google Scholar 

  • Knowles LL, Maddison WP (2002) Statistical phylogeography. Mol Ecol 11:2623–2635

    Article  PubMed  Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216

    Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    CAS  PubMed  Google Scholar 

  • Lacson JM, Clark S (1995) Genetic divergence of Maldivian and Micronesian demes of the damselfishes Stegastes nigricans, Crysiptera biocellata, C. glauca and C. leucopoma (Pomacentridae). Mar Biol 121:585–590

    Google Scholar 

  • Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292:679–686

    Article  CAS  PubMed  Google Scholar 

  • Lavery S, Moritz C, Fielder DR (1995) Changing patterns of population structure and gene flow at different spatial scales in Birgus latro (the coconut crab). Heredity 74:531–541

    CAS  Google Scholar 

  • Lavery S, Moritz C, Fielder DR (1996) Indo-pacific population structure and the evolutionary history of the coconut crab Birgus latro. Mol Ecol 5:557–570

    Article  Google Scholar 

  • Lee W, Conroy J, Howell W, Kocher TD (1995) Structure and evolution of teleost mitochondrial control regions. J Mol Evol 41:54–66

    CAS  PubMed  Google Scholar 

  • Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution 55:955–975

    PubMed  Google Scholar 

  • Marquez LM, Oppen MJH van, Willis BL, Reyes A, Miller DJ (2002) The highly cross-fertile coral species, Acropora hyacinthus and Acropora cytherea, constitute statistically distinguishable lineages. Mol Ecol 11:1339–1349

    Article  PubMed  Google Scholar 

  • McCune B, Mefford MJ (1999) Multivariate analysis of ecological data ver 4.0. MjM Software, Gleneden Beach, Ore.

  • McCusker MR, Parkinson E, Taylor EJ (2000) Mitochondrial DNA variation in rainbow trout (Oncorhynchus mykiss) across its native range: testing biogeographic hypotheses and their relevance to conservation. Mol Ecol 9:2089–2108

    Article  PubMed  Google Scholar 

  • McMillan WO, Palumbi SR (1995) Concordant evolutionary patterns among Indo-West Pacific butterflyfishes. Proc R Soc Lond B 260:229–236

    CAS  PubMed  Google Scholar 

  • McMillan WO, Palumbi SR (1997) Rapid rate of control region evolution in Pacific butterflyfishes (Chaetodontidae). J Mol Evol 45:473–484

    CAS  PubMed  Google Scholar 

  • Muss A, Robertson DR, Stepien CA, Wirtz P, Bowen BW (2001) Phylogeography of Ophioblennius: the role of ocean currents and geography in reef fish evolution. Evolution 55:561–572

    CAS  PubMed  Google Scholar 

  • Neigel JE, Avise JC (1993) Application of a random walk model to the distributions of animal mitochondrial DNA variation. Genetics 135:1209–1220

    PubMed  Google Scholar 

  • Nelson JS, Hoddell RJ, Chou LM, Chan WK, Phang VEP (2000) Phylogeographic structure of the false Clownfish, Amphiprion ocellaris, explained by sea level changes on the Sunda shelf. Mar Biol 137:727–736

    CAS  Google Scholar 

  • Nicholas K, Nicholas HJ, Deerfield D (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW NEWS 4:14

    Google Scholar 

  • Palumbi SR (1994) Genetic divergence, reproductive isolation and marine speciation. Annu Rev Ecol Syst 25:547–572

    Article  Google Scholar 

  • Palumbi SR (1997) Molecular biogeography of the Pacific. Proc 8th Int Coral Reef Symp 1:91–96

    CAS  Google Scholar 

  • Palumbi SR, Grabowsky G, Duda TF, Geyer L, Tachino N (1997) Speciation and population genetic structure in tropical Pacific sea urchins. Evolution 51:1506–1517

    Google Scholar 

  • Planes S (1993) Genetic differentiation in relation to restricted larval dispersal of the convict surgeonfish Acanthurus triostegus in French Polynesia. Mar Ecol Prog Ser 98:237–246

    Google Scholar 

  • Planes S, Fauvelot C (2002) Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evolution 56:378–399

    PubMed  Google Scholar 

  • Planes S, Parroni M, Chauvet C (1997) Evidence of limited gene flow in three species of coral reef fishes in the lagoon of New Caledonia. Mar Biol 130:361–366

    Article  Google Scholar 

  • Planes S, Romans P, Lecomte-Finiger R (1998) Genetic evidence of closed life-cycles for some coral reef fishes within Taiaro Lagoon (Tuomoto Archipelago, French Polynesia). Coral Reefs 17:9–14

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA, Templeton AR (2000) GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9:487–488

    CAS  PubMed  Google Scholar 

  • Randall J, Bruce R (1983) The parrotfishes of the subfamily Scarinae of the western Indian Ocean with a description of 3 new species. Ichthyol Bull JLB Inst Ichthyol 47:1–39

    Google Scholar 

  • Randall JE, Allen GR, Steene RC (1997) Fishes of the Great Barrier Reef and Coral Sea. Crawford House, Bathurst

  • Richardson BJ (1983) Distribution of protein variation in skipjack tuna (Katsuwonus pelamis) from the central and south-western Pacific. Aust J Mar Freshw Res 34:231–251

    CAS  Google Scholar 

  • Riginos C, Victor BC (2001) Larval spatial distributions and other early life-history characteristics predict genetic differentiation in eastern Pacific blennioid fishes. Proc R Soc Lond B 268:1931–1936

    Article  PubMed  Google Scholar 

  • Rocha LA, Bass AL, Robertson DR, Bowen BW (2002) Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae). Mol Ecol 11:243–252

    Article  CAS  PubMed  Google Scholar 

  • Rocha-Olivares A, Garber NM, Stuck KC (2000) High genetic diversity, large inter-oceanic differences and historical demography of the striped mullet. J Fish Biol 57:1134–1149

    Article  CAS  Google Scholar 

  • Rodriguez-Lanetty M, Hoegh-Guldberg O (2002) The phylogeography and connectivity of the latitudinally widespread scleractinian coral Plesiastrea versipora in the western Pacific. Mol Ecol 11:1177–1189

    Article  CAS  PubMed  Google Scholar 

  • Rohlf FJ (1973) Algorithm 76. Hierarchical clustering using the minimum spanning tree. Comp J 16:93–95

    Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  Google Scholar 

  • Russ G (1984a) Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef I. Levels of variability across the entire continental shelf. Mar Ecol Prog Ser 20:23–34

    Google Scholar 

  • Russ G (1984b) Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef II. Patterns of zonation of mid-shelf and outershelf reefs. Mar Ecol Prog Ser 20:35–44

    Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory handbook, 2nd edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Sancho G, Solow A, Lobel P (2000) Environmental influences on the diel timing of spawning in coral reef fishes. Mar Ecol Prog Ser 206:193–212

    Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis ver 2.000. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva

  • Shulman MJ, Bermingham E (1995) Early life histories, ocean currents and the population genetics of coral reef fishes. Evolution 49:879–910

    Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 471:264–279

    Google Scholar 

  • Sluka R, Miller M (2001) Herbivorous fish assemblages and herbivory pressure on Laamu Atoll, Republic of Maldives. Coral Reefs 20:255–262

    Article  Google Scholar 

  • Stepien CA, Randall JE, Rosenblatt RH (1994) Genetic and morphological divergence of a circumtropical complex of goatfishes: Mulloidichthys vanicolensis, M. dentatus and M. martinicus. Pac Sci 48:44–56

    Google Scholar 

  • Streelman J, Alfaro M, Westneat M, Bellwood D, Karl S (2002) Evolutionary history of the parrotfishes: biogeography, ecomorphology and comparative diversity. Evolution 56:961–971

    CAS  Google Scholar 

  • Swofford DL (1998) PAUP*—Phylogenetic analysis using parsimony (*and other methods) ver 4. Sinauer, Sunderland, Mass.

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    Article  CAS  PubMed  Google Scholar 

  • Templeton AR (1998) Nested clade analyses of phylogenetic data: testing hypotheses about gene flow and population history. Mol Ecol 7:381–397

    CAS  PubMed  Google Scholar 

  • Templeton AR, Sing CF (1993) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134:659–669

    Google Scholar 

  • Templeton AR, Boerwinkle E, Sing CF (1987) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping I. Basic theory and an analysis of alcohol edhydrogenase activity in Drosophila. Genetics 117:343–351

    Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data III. Cladogram estimation. Genetics 132:619–633

    CAS  PubMed  Google Scholar 

  • Templeton AR, Routman E, Phillips CA (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Amblystoma tigrinum. Genetics 140:767–782

    CAS  PubMed  Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. Heredity 89:438–450

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Google Scholar 

  • Wells PE, Wells GM (1994) Large-scale reorganisation of ocean currents offshore Western Australia during the late Quaternary. Mar Micropaleontol 24:157–185

    Article  Google Scholar 

  • Wells PE, Wells GM, Cali GM, Chivas A (1994) Response of deep-sea benthic foraminiferan to late Quaternary climate changes, southeast Indian Ocean, offshore Western Australia. Mar Micropaleontol 24:185–229

    Article  Google Scholar 

  • Williams ST, Benzie JAH (1996) Genetic uniformity of widely separated populations of the coral reef starfish Linckia laevigata from the west Pacific and east Indian Oceans, revealed by allozyme electrophoresis. Mar Biol 126:99–108

    Google Scholar 

  • Williams ST, Benzie JAH (1998) Evidence of a biogeographic break between populations of a high dispersal starfish: congruent regions within the Indo-west Pacific defined by colour morphs, mtDNA, and allozyme data. Evolution 52:87–99

    Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    CAS  PubMed  Google Scholar 

  • Worheide G, Hooper JNA, Degnan BM (2002) Phylogeography of western Pacific Leucetta ‘chagosensis’ (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef world heritage area (Australia). Mol Ecol 11:1753–1768

    Article  PubMed  Google Scholar 

  • Yokoyama Y, Lambeck K, De Dekker P, Johnston P, Fiffield LK (2000) Timing of the last glacial maximum from observed sea-level minima. Nature 406:713–716

    Article  PubMed  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice Hall, Englewood Cliffs, N.J.

Download references

Acknowledgements

We thank three anonymous reviewers for constructive comments on a previous draft of this manuscript. Logistic support for sampling over the nine geographic locations was provided as follows: Amirante island reefs and the granitic reefs of the Seychelles Bank, Seychelles Fisheries Authority, research vessel “L’Amitie”; Rota Island, the University of Guam Marine Laboratory; Hawaii, University of Hawaii Marine Laboratory; PNG, Mahonia Na Dari Research Centre, Kimbe Bay; Abrolhos Islands, West Australia Fisheries (Geraldton); Ningaloo Australian Institute of Marine Science (West Australia); Lizard Island, Lizard Island Research Station, (Australian Museum); Whitsunday Islands, Australian Institute of Marine Science. Funding was provided by the Queensland Government/Smithsonian Institution collaborative research program (JHC, DRR), Smithsonian Tropical Research Institution, Panama, and the James Cook University funding program (ARC small grant). We thank C. Dudgeon, J. Gardiner, and S. Klanten for logistic and intellectual support in the laboratory, M. van Oppen, D. Blair, G. Worheide, and D. Posada for statistical advice, and J. Ackerman, P. Doherty, D. Bellwood, W. Robbins, M. Meekan, and M. McCormick for additional sample collections. The methods employed in this study comply with current Australian law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Bay.

Additional information

Communicated by M.S. Johnson, Crawley

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bay, L.K., Choat, J.H., van Herwerden, L. et al. High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past?. Marine Biology 144, 757–767 (2004). https://doi.org/10.1007/s00227-003-1224-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-003-1224-3

Keywords

Navigation