Skip to main content
Log in

Genetic differentiation among populations of the Mediterranean hermaphroditic brooding coral Balanophyllia europaea (Scleractinia: Dendrophylliidae)

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Spatial models of genetic structure and potential gene flow were determined for five populations of Balanophyllia europaea, a simultaneous hermaphroditic and brooding coral, endemic to the Mediterranean. Six allozyme loci indicated a genetic structure that departed markedly from Hardy–Weinberg equilibrium, with a significant lack of heterozygotes. The genetic structure observed supports the hypothesis that self-fertilisation characterises the reproductive biology of B. europaea. Populations at small spatial scales (8–40 m) are genetically connected, while those at large scales (36–1,941 km) are genetically fragmented; the genetic differentiation of the populations is not correlated to geographic separation. This spatial model of genetic structure is compatible with an inbreeding mating system. Furthermore, it is also consistent with the expected dispersal potential of swimming larvae of brooding corals, i.e. larvae that are able to produce significant gene flows only within limited spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ayre DJ, Dufty S (1994) Evidence for restricted gene flow in the viviparous coral Seriatopora hystrix on Australia’s Great Barrier Reef. Evolution 48:1183–1201

    Google Scholar 

  • Ayre DJ, Hughes TP (2000) Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 54:1590–1605

    CAS  PubMed  Google Scholar 

  • Ayre DJ, Resing JM (1986) Sexual and asexual production of planulae in reef corals. Mar Biol 90:187–190

    Google Scholar 

  • Ayre DJ, Read J, Wishart J (1991) Genetic subdivision within the eastern Australian population of the sea anemone Actinia tenebrosa. Mar Biol 109:379–390

    Google Scholar 

  • Ayre DJ, Davis AR, Billingham M, Llorens T, Styan C (1997a) Genetic evidence for contrasting patterns of dispersal in solitary and colonial ascidians. Mar Biol 130:51–62

    Article  Google Scholar 

  • Ayre DJ, Hughes TP, Standish RJ (1997b) Genetic differentiation, reproductive mode, and gene flow in the brooding coral Pocillopora damicornis along the Great Barrier Reef, Australia. Mar Ecol Prog Ser 159:175–187

    Google Scholar 

  • Barret SCH, Harder LD (1996) Ecology and evolution of plant mating. Trends Ecol Evol 11:73–79

    Article  Google Scholar 

  • Bastidas C, Benzie JAH, Fabricius KE (2002) Genetic differentiation among populations of the brooding soft coral Clavularia koellikeri on the Great Barrier Reef. Coral Reefs 21:233–241

    Google Scholar 

  • Black KP, Moran PJ, Hammond LS (1991) Numerical models show coral reefs can be self-seeding. Mar Ecol Prog Ser 74:1–11

    Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow and population structure. Q Rev Biol 74:21–45

    Article  CAS  PubMed  Google Scholar 

  • Brazeau DA, Gleason DF, Morgan ME (1998) Self-fertilization in brooding hermaphroditic Caribbean corals: evidence from molecular markers. J Exp Mar Biol Ecol 231:225–238

    Article  Google Scholar 

  • Brown AHD (1978) Isozymes, plant population genetic structure, and genetic conservation. Theor Appl Genet 52:145–157

    Google Scholar 

  • Bucklin A, Hedgecock D, Hand C (1984) Genetic evidence of self-fertilization in the sea anemone Epiactis prolifera. Mar Biol 109:379–390

    Google Scholar 

  • Cairns DS (1977) Biological results of the University of Miami deep-sea expedition, vol 121. A review of the recent species of Balanophyllia (Anthozoa: Scleractinia) in the western Atlantic, with descriptions of four new species. Proc Biol Soc Wash 90:132–148

    Google Scholar 

  • Carlon DB (1999) The evolution of mating systems in tropical reef corals. Trends Ecol Evol 14:491–495

    Article  PubMed  Google Scholar 

  • Cohen S (1992) Population biology of two species of Corella: mating system and demography. PhD thesis, University of Washington, Seattle

    Google Scholar 

  • Dai CF, Fan TY, Yu JK (2000) Reproductive isolation and genetic differentiation of a scleractinian coral Mycedium elephantotus. Mar Ecol Prog Ser 201:179–187

    Google Scholar 

  • Edmands S, Potts DC (1997) Population genetic structure in brooding sea anemones (Epiactis spp.) with contrasting reproductive modes. Mar Biol 127:485–498

    Article  Google Scholar 

  • Fadlallah YH (1983) Population dynamics and life history of a solitary coral, Balanophyllia elegans, from Central California. Oecologia 58:200–207

    Google Scholar 

  • Frankham R (1995) Conservation genetics. Annu Rev Genet 29:305–307

    Article  CAS  PubMed  Google Scholar 

  • Furman E (1990) Self-fertilization in Balanus improvisus Darwin. J Mar Biol Assoc UK 70:721–740

    Google Scholar 

  • Gerrodette T (1981) Dispersal of the solitary coral Balanophyllia elegans by demersal planular larvae. Ecology 62:611–619

    Google Scholar 

  • Ghiselin MT (1969) The evolution of hermaphroditism among animals. Q Rev Biol 44:189–208

    Article  CAS  PubMed  Google Scholar 

  • Goffredo S (1999) Population dynamics and reproductive biology of the solitary coral Balanophyllia europaea (Anthozoa, Scleractinia) in the northern Tyrrhenian Sea. PhD thesis, University of Bologna, Bologna

  • Goffredo S, Telò T (1998) Hermaphroditism and brooding in the solitary coral Balanophyllia europaea (Cnidaria, Anthozoa, Scleractinia). Ital J Zool 65:159–165

    Google Scholar 

  • Goffredo S, Zaccanti F (2004) Laboratory observations on larval behavior and metamorphosis in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Bull Mar Sci (in press)

  • Goffredo S, Telò T, Scanabissi F (2000) Ultrastructural observations of the spermatogenesis of the hermaphroditic solitary coral Balanophyllia europaea (Anthozoa, Scleractinia). Zoomorphology 119:231–240

    Google Scholar 

  • Goffredo S, Arnone S, Zaccanti F (2002) Sexual reproduction in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Mar Ecol Prog Ser 229:83–94

    Google Scholar 

  • Goffredo S, Mattioli G, Zaccanti F (2004) Growth and population dynamics model of the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs (in press)

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistic. J Hered 86:485–486

    Google Scholar 

  • Goudet J (2001) A program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html

  • Grosberg RK (1991) Sperm-mediated gene flow and the genetic structure of a population of the colonial ascidian Botryllus schlosseri. Evolution 45:130–142

    Google Scholar 

  • Grunbaum BW (1981) Handbook for forensic individualization of human blood and bloodstain. Library of Congress catalog card no. 80, Sartorius, Hayward

  • Harper JL (1977) Population biology of plants. Academic, London

  • Harrison PL (1985) Sexual characteristics of scleractinian corals: systematic and evolutionary implications. In: Gabrié C, et al (eds) Proc 5th Int Coral Reef Symp, vol 4. Antenne Museum—EPHE, Moorea, Tahiti, pp 337–342

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the world, vol 25. Coral reefs. Elsevier, Amsterdam, pp 133–207

  • Hedgecock D (1986) Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bull Mar Sci 39:550–564

    Google Scholar 

  • Hellberg ME (1994) Relationships between inferred levels of gene flow and geographic distance in philopatric coral, Balanophyllia elegans. Evolution 48:1829–1854

    Google Scholar 

  • Hellberg ME (1995) Stepping-stone gene flow in the solitary coral Balanophyllia elegans: equilibrium and nonequilibrium at different spatial scales. Mar Biol 123:573–582

    Google Scholar 

  • Hellberg ME (1996) Dependence of gene flow on geographic distance in two solitary corals with different larval dispersal capabilities. Evolution 50:1167–1175

    Google Scholar 

  • Highsmith RC (1982) Reproduction by fragmentation in corals. Mar Ecol Prog Ser 7:207–226

    Google Scholar 

  • Jackson JBC (1986) Modes of dispersal of clonal benthic invertebrates: consequences for species distributions and genetic structure of local populations. Bull Mar Sci 39:588–606

    Google Scholar 

  • Jarne P, Charlesworth D (1993) The evolution of the selfing rate in functionally hermaphrodite plants and animals. Annu Rev Ecol Syst 24:441–466

    Article  Google Scholar 

  • Jarne P, Charlesworth D (1996) Hermes meets Aphrodite: an animal perspective. Trends Ecol Evol 11:105–107

    Article  Google Scholar 

  • Jarne P, Vianey-Liaud M, Delay B (1993) Selfing and outcrossing in hermaphrodite freshwater gastropods (Basommatophora): where, when and why? Biol J Linn Soc 49:99–125

    Article  Google Scholar 

  • Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576

    Google Scholar 

  • Knowlton N, Jackson JBC (1993) Inbreeding and outbreeding in marine invertebrates. In: Thornhill NW (ed) The natural history of inbreeding and outbreeding: theoretical and empirical perspectives. University of Chicago, Chicago, pp 200–249

  • Kojis BL, Quinn NJ (1981) Aspects of sexual reproduction and larval development in the shallow water hermatypic coral, Goniastrea australensis. Bull Mar Sci 31:558–573

    Google Scholar 

  • Levene H (1949) On a matching problem arising in genetics. Ann Math Stat 20:91–94

    Google Scholar 

  • McFadden CS (1997) Contributions of sexual and asexual reproduction to population structure in the clonal soft coral Alcyonium rudyi. Evolution 51:112–126

    Google Scholar 

  • McFadden CS, Donahue R, Hadland BK, Weston R (2001) A molecular phylogenetic analysis of reproductive trait evolution in the soft coral genus Alcyonium. Evolution 55:54–67

    CAS  PubMed  Google Scholar 

  • Meera-Khan P (1971) Enzyme electrophoresis on cellulose acetate gel: zymogram patterns in man–mouse and man–Chinese hamster somatic cell hybrids. Arch Biochem Biophys 145:470–483

    CAS  PubMed  Google Scholar 

  • Miller KJ (1997) Genetic structure of black coral populations in New Zealand’s fiords. Mar Ecol Prog Ser 161:123–132

    Google Scholar 

  • Mogie M (1992) The evolution of asexual reproduction in plants. Chapman and Hall, London

  • Mundy CN, Babcock RC (1998) Role of light intensity and spectral quality in coral settlement: implications for depth-dependent settlement? J Exp Mar Biol Ecol 223:235–255

    Article  Google Scholar 

  • Muscatine L, Cernichiari E (1969) Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol Bull (Woods Hole) 137:506–523

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323

    CAS  PubMed  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    Google Scholar 

  • Neigel JE (2002) Is Fst obsolete? Conserv Genet 3:167–173

    Article  CAS  Google Scholar 

  • Palumbi SR (1992) Marine speciation on a small planet. Trends Ecol Evol 7:114–118

    Article  Google Scholar 

  • Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572

    Article  Google Scholar 

  • Palumbi SR, Wilson AC (1990) Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis. Evolution 44:403–415

    Google Scholar 

  • Pusey A, Wolf M (1996) Inbreeding avoidance in animals. Trends Ecol Evol 11:201–206

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) Population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Richmond R (1987) Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar Biol 93:527–533

    Google Scholar 

  • Roberts CM (1998) Connectivity and management of Caribbean coral reefs. Science 278:1454–1457

    Article  Google Scholar 

  • Schneppenheim R, MacDonald CM (1984) Genetic variation and population structure of krill (Euphausia superba) in the Atlantic sector of Antarctic waters and off the Antarctic Peninsula. Polar Biol 3:19–28

    CAS  Google Scholar 

  • Schoen DJ, Brown AHD (1991) Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc Natl Acad Sci 88:4494–4497

    CAS  PubMed  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Google Scholar 

  • Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368

    Google Scholar 

  • Stoddart JA (1983) Asexual production of planulae in the coral Pocillopora damicornis. Mar Biol 76:279–284

    Google Scholar 

  • Tomlinson J (1966) The advantages of hermaphroditism and parthenogenesis. J Theor Biol 11:54–58

    CAS  PubMed  Google Scholar 

  • Uyenoyama MK, Holsinger KH, Waller DM (1993) Ecological and genetic factors directing the evolution of self-fertilization. In: Futuyma D, Antonovics J (eds) Oxford surveys in evolutionary biology, vol IX. Oxford University Press, Oxford, pp 327–382

  • Veron JEN (1995) Corals in space and time: the biogeography and evolution of Scleractinia. Union of New South Wales Press, Sydney

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: Fst≠1/(4Nm+1). Heredity 82:117–125

    Article  PubMed  Google Scholar 

  • Willis BL, Oliver JK (1990) Direct tracking of coral larvae: implications for the dispersal of planktonic larvae in topographically complex environments. Ophelia 32:145–162

    Google Scholar 

  • Wolanski E (1994) Physical oceanographic processes of the Great Barrier Reef. CRC Press, London

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    Google Scholar 

  • Wright S (1969) Evolution and the genetics of natural population, vol 2. The theory of gene frequencies. University of Chicago Press, Chicago

  • Wright S (1978) Evolution and the genetics of natural populations, vol 4. Variability within and among natural populations. University of Chicago Press, Chicago

  • Zibrowius H (1980) Les scléractiniaires de la Méditerraée et de l’Atlantique nord-oriental. Mem Inst Oceanogr (Monaco) 11:1–284

    Google Scholar 

Download references

Acknowledgements

We thank the Italian Ministry of Education, University and Research, the Scuba Schools International Italia and the Underwater Life Project, our sponsors for this study. We also thank B. Mantovani for her generosity in supplying the research methodology and for her revision of this paper; M. Passamonti for his help in the laboratory and with the statistical analyses; M. Abbiati for his help in electrophoretic techniques; A. Marino for his recommendations on software; our divers E. Manzardo, M. Pasquini and M. Longagnani for their help in sample collection; the Bologna Scuba Team school for its logistical support of the dives; and the Marine Science Group for its scientific and technological contributions. N.E. Chadwick-Furman (Interuniversity Institute for Marine Science at Eilat, Israel), J. Hall-Spencer (University of Glasgow, United Kingdom) and two anonymous reviewers commented on the manuscript. These experiments complied with the current laws of Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Goffredo.

Additional information

Communicated by R. Cattaneo-Vietti, Genova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goffredo, S., Mezzomonaco, L. & Zaccanti, F. Genetic differentiation among populations of the Mediterranean hermaphroditic brooding coral Balanophyllia europaea (Scleractinia: Dendrophylliidae). Marine Biology 145, 1075–1083 (2004). https://doi.org/10.1007/s00227-004-1403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-004-1403-x

Keywords

Navigation