Skip to main content

Advertisement

Log in

Effect of probenecid on the pharmacokinetics of carbamazepine in healthy subjects

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objectives

Carbamazepine (CBZ) undergoes biotransformation by CYP3A4 and CYP2C8, and glucuronide conjugation. There has been no clear demonstration to reveal the role of glucuronidation in the disposition of CBZ. We evaluated the effect of probenecid, a UDP-glucuronosyltransferase inhibitor, on the pharmacokinetics of CBZ in humans.

Methods

In a randomized, open-label, two-way crossover study, ten healthy male subjects were treated twice daily for 10 days with 500 mg probenecid or with a matched placebo. On day 6, a single dose of 200 mg CBZ was administered orally. Concentrations of CBZ and CBZ 10,11-epoxide (CBZ-E) in plasma and urine were measured.

Results

Probenecid decreased the area under the plasma concentration–time curve (AUC) of CBZ from 1253.9 μmol h/l to 1020.7 μmol h/l (P<0.001) while increasing that of CBZ-E from 137.6 μmol h/l to 183.5 μmol h/l (P=0.033). The oral clearance of CBZ was increased by probenecid by 26% (90% confidence interval, 17–34%; P<0.001). Probenecid increased the AUC ratio of CBZ-E/CBZ from 0.11 to 0.16 (P<0.001). However, probenecid had minimal effect on the recovery of the conjugated and free forms of CBZ and CBZ-E in urine.

Conclusion

Although probenecid showed a minimal effect on the glucuronidation of CBZ and CBZ-E, it increased CBZ biotransformation to CBZ-E, most likely reflecting the induction of CYP3A4 and CYP2C8 activities, in humans. These results demonstrate that glucuronide conjugation plays a minor role in the metabolism of CBZ and CBZ-E in humans, and that probenecid has an inducing effect on the disposition of CBZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beghi E, Perucca E (1995) The management of epilepsy in the 1990s: acquisitions, uncertainties and priorities for future research. Drugs 49:680–694

    CAS  PubMed  Google Scholar 

  2. Beghi E (2002) Carbamazepine: clinical efficacy and use in other neurological disorders. In: Levy R, Mattson R, Meldrum B et al (eds) Antiepileptic drugs, 5th edn. Lippincott Williams& Wilkins, Philadelphia, pp273–277

    Google Scholar 

  3. Trimble MR (2002) Carbamazepine: clinical efficacy and use in psychiatric disorders. In: Levy R, Mattson R, Meldrum B et al (eds) Antiepileptic drugs, 5th edn. Lippincott Williams& Wilkins, Philadelphia, pp278–284

    Google Scholar 

  4. Ernst CL, Goldberg JF (2003) Antidepressant properties of anticonvulsant drugs for bipolar disorder. J Clin Psychopharmacol 23:182–192

    Google Scholar 

  5. Eichelbaum M, Tomson T, Tybring G, Bertilsson L (1985) Carbamazepine metabolism in man. Induction and pharmacogenetic aspects. Clin Pharmacokinet 10:80–90

    CAS  PubMed  Google Scholar 

  6. Kerr BM, Thummel KE, Wurden CJ, Klein SM, Kroetz DL, Gonzalez FJ, Levy RH (1994) Human liver carbamazepine metabolism: role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol 47:1969–1979

    Google Scholar 

  7. Mather GG, Levy RH (2000) Anticonvulsants. In: Levy RH, Thummel KE, Trager WF, Hansten PD, Eichelbaum M (eds) Metabolic drug interactions. Lippincott Williams& Wilkins, Philadelphia

  8. Maggs JL, Pirmohamed M, Kitteringham NR, Park BK (2002) Characterization of the metabolites of carbamazepine in patient urine by liquid chromatography/mass spectrometry. Drug Metab Dispos 30:1170–1179

    Article  PubMed  Google Scholar 

  9. Bauer JE, Gerber N, Lynn RK, Smith RG, Thompson RM (1976) A new N-glucuronide metabolite of carbamazepine. Experientia 32:1032–1033

    CAS  PubMed  Google Scholar 

  10. Spina E, Pisani F, Perucca E (1996) Clinically significant pharmacokinetic drug interactions with carbamazepine. An update. Clin Pharmacokinet 31:198–214

    CAS  PubMed  Google Scholar 

  11. Baciewicz AM (1986) Carbamazepine drug interactions. Ther Drug Monit 8:305–317

    CAS  PubMed  Google Scholar 

  12. Rambeck B, Specht U, Wolf P (1996) Pharmacokinetic interactions of the new antiepileptic drugs. Clin Pharmacokinet 31:309–324

    Google Scholar 

  13. Levy RH, Koch KM (1982) Drug interactions with valproate. Drugs 24:543–556

    CAS  PubMed  Google Scholar 

  14. Yu HY, Shen YZ (2002) Concentration-dependent disposition of glucuronide metabolite of valproate. J Pharm Pharmacol 54:633–639

    Article  CAS  PubMed  Google Scholar 

  15. Bernus I, Dickinson RG, Hooper WD, Eadie MJ (1997) The mechanism of the carbamazepine–valproate interaction in humans. Br J Clin Pharmacol 44:21–27

    Google Scholar 

  16. Staines AG, Coughtrie MW, Burchell B (2004) N-glucuronidation of carbamazepine in human tissues is mediated by UGT2B7. J Pharmacol Exp Ther 311:1131–1137

    Google Scholar 

  17. Miners JO, Mackenzie PI (1991) Drug glucuronidation in humans. Pharmacol Ther 51:347–369

    Article  CAS  PubMed  Google Scholar 

  18. Uchaipichat V, Mackenzie PI, Guo XH, Gardner-Stephen D, Galetin A, Houston JB, Miners JO (2004) Human UDP-glucuronosyltransferases: isoform selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic solvents, and inhibition by diclofenac and probenecid. Drug Metab Dispos 32:413–423

    Article  CAS  PubMed  Google Scholar 

  19. Abernethy DR, Greenblatt DJ, Ameer B, Shader RI (1985) Probenecid impairment of acetaminophen and lorazepam clearance: direct inhibition of ether glucuronide formation. J Pharmacol Exp Ther 234:345–349

    CAS  PubMed  Google Scholar 

  20. Dalton MJ, Powell JR, Messenheimer JA Jr (1985) Ranitidine does not alter single-dose carbamazepine pharmacokinetics in healthy adults. Drug Intell Clin Pharm 19:941–944

    Google Scholar 

  21. Elyas AA, Ratnaraj N, Goldberg VD, Lascelles PT (1982) Routine monitoring of carbamazepine and carbamazepine-10,11-epoxide in plasma by high-performance liquid chromatography using 10-methoxycarbamazepine as internal standard. J Chromatogr 231:93–101

    CAS  PubMed  Google Scholar 

  22. So EL, Ruggles KH, Cascino GD, Ahmann PA, Weatherford KW (1994) Seizure exacerbation and status epilepticus related to carbamazepine-10,11-epoxide. Ann Neurol 35:743–746

    Article  CAS  PubMed  Google Scholar 

  23. Burstein AH, Horton RL, Dunn T, Alfaro RM, Piscitelli SC, Theodore W (2000) Lack of effect of St John’s Wort on carbamazepine pharmacokinetics in healthy volunteers. Clin Pharmacol Ther 68:605–612

    Google Scholar 

  24. Fitzgerald BJ, Okos AJ (2002) Elevation of carbamazepine-10,11-epoxide by quetiapine. Pharmacotherapy 22:1500–1503

    Google Scholar 

  25. Bertilsson L, Tomson T (1986) Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10,11-epoxide. An update. Clin Pharmacokinet 11:177–198

    CAS  PubMed  Google Scholar 

  26. Smith DA (2000) Induction and drug development. Eur J Pharm Sci 11:185–189

    Article  CAS  PubMed  Google Scholar 

  27. Potschka H, Fedrowitz M, Loscher W (2001) P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. Neuroreport 12:3557–3560

    Article  CAS  PubMed  Google Scholar 

  28. Potschka H, Fedrowitz M, Loscher W (2003) Multidrug resistance protein MRP2 contributes to blood–brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther 306:124–131

    Google Scholar 

  29. Gerk PM, Vore M (2002) Regulation of expression of the multidrug resistance-associated protein 2 (MRP2) and its role in drug disposition. J Pharmacol Exp Ther 302:407–415

    Google Scholar 

  30. Oude Elferink RP, Meijer DK, Kuipers F, Jansen PL, Groen AK, Groothuis GM (1995) Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport. Biochim Biophys Acta 1241:215–268

    Google Scholar 

  31. Chan LM, Lowes S, Hirst BH (2004) The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci 21:25–51

    Article  CAS  PubMed  Google Scholar 

  32. Potschka H, Fedrowitz M, Loscher W (2003) Brain access and anticonvulsant efficacy of carbamazepine, lamotrigine, and felbamate in ABCC2/MRP2-deficient TR—rats. Epilepsia 44:1479–486

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Young Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KA., Oh, S.O., Park, PW. et al. Effect of probenecid on the pharmacokinetics of carbamazepine in healthy subjects. Eur J Clin Pharmacol 61, 275–280 (2005). https://doi.org/10.1007/s00228-005-0940-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-005-0940-7

Keywords

Navigation