Skip to main content
Log in

Estimation of cardiac output in a pharmacological trial using a simple method based on arterial blood pressure signal waveform: a comparison with pulmonary thermodilution and echocardiographic methods

  • Clinical Trials
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

Cardiac output (CO) has traditionally been measured using invasive techniques, which involve an element of risk. Thus, a reliable less-invasive method for determining CO would be very valuable for research use. We tested whether simple analysis of the arterial pulse waveform, not requiring large-vessel catheterisation or expensive equipment, could provide an estimate of CO that is accurate enough for pharmacological studies.

Methods

We measured CO in 11 healthy male subjects who received low and high doses of dexmedetomidine (α2-adrenoceptor agonist), using pulse contour analysis, echocardiography and pulmonary thermodilution techniques.

Results

At baseline, these methods gave the following mean (SD) values of CO: 6.18 (1.59), 5.22 (1.35) and 7.03 (1.54) l/min, respectively. High-dose dexmedetomidine reduced CO to 4.50 (0.68), 3.65 (0.65) and 4.80 (0.89) l/min, corresponding to −25 (14) %, −28 (12) % and −30 (14) % reductions from baseline, respectively. The pulse contour method described these dexmedetomidine-induced changes in CO very similarly to the thermodilution and echocardiographic methods. The limits of agreement [bias (2SD)] were 0.55 (2.55) and −0.10 (2.04) l/min, respectively.

Conclusion

The minimally invasive pulse contour analysis technique might be suitable for pharmacological studies for the detection of major drug-induced reductions in CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Conway J (1990) Clinical assessment of cardiac output. Eur Heart J 11:148–150

    PubMed  Google Scholar 

  2. Boyd KD, Thomas SJ, Gold J, Boyd AD (1983) A prospective study of complications of pulmonary artery catheterizations in 500 consecutive patients. Chest 84:245–249

    Article  PubMed  CAS  Google Scholar 

  3. Horst HM, Obeid FN, Vij D, Bivins BA (1984) The risks of pulmonary arterial catheterization. Surg Gynecol Obstet 159:229–232

    PubMed  CAS  Google Scholar 

  4. Hett DA, Jonas MM (2004) Non-invasive cardiac output monitoring. Intensive Crit Care Nurs 20:103–108

    Article  PubMed  CAS  Google Scholar 

  5. Botero M, Lobato EB (2001) Advances in noninvasive cardiac output monitoring: an update. J Cardiothorac Vasc Anesth 15:631–640

    Article  PubMed  CAS  Google Scholar 

  6. Wesseling KH, Jansen JR, Settels JJ, Schreuder JJ (1993) Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol 74:2566–2573

    PubMed  CAS  Google Scholar 

  7. Wesseling KH, de Wit B, Weber JAP, Smith NT (1983) A simple device for the continuous measurement of cardiac output. Its model basis and experimental verification. Adv Cardiovasc Phys 5:16–52

    Google Scholar 

  8. Linton NW, Linton RA (2001) Estimation of changes in cardiac output from the arterial blood pressure waveform in the upper limb. Br J Anaesth 86:486–496

    Article  PubMed  CAS  Google Scholar 

  9. Hamilton TT, Huber LM, Jessen ME (2002) PulseCO: a less-invasive method to monitor cardiac output from arterial pressure after cardiac surgery. Ann Thorac Surg 74:S1408–S1412

    Article  Google Scholar 

  10. Kuusela TA, Jartti TT, Tahvanainen KU, Kaila TJ (2004) Effects of terbutaline on peripheral vascular resistance and arterial compliance. J Cardiovasc Pharmacol 44:74–81

    Article  PubMed  CAS  Google Scholar 

  11. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD (2000) The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology 93:382–394

    Article  PubMed  CAS  Google Scholar 

  12. Shafer SL, Siegel LC, Cooke JE, Scott JC (1988) Testing computer-controlled infusion pumps by simulation. Anesthesiology 68:261–266

    Article  PubMed  CAS  Google Scholar 

  13. Imholz BPM (1991) Noninvasive finger arterial pressure waveform registration: evaluation of Finapres and Portapres. Thesis, University of Amsterdam, Amsterdam

    Google Scholar 

  14. Stok WJ, Baisch F, Hillebrecht A, Schulz H, Meyer M, Karemaker JM (1993) Noninvasive cardiac output measurement by arterial pulse analysis compared with inert gas rebreathing. J Appl Physiol 74:2687–2693

    PubMed  CAS  Google Scholar 

  15. Schmid ER, Schmidlin D, Tornic M, Seifert B (1999) Continuous thermodilution cardiac output: clinical validation against a reference technique of known accuracy. Intensive Care Med 25:166–172

    Article  PubMed  CAS  Google Scholar 

  16. Thrush D, Downs JB, Smith RA (1995) Continuous thermodilution cardiac output: agreement with Fick and bolus thermodilution methods. J Cardiothorac Vasc Anesth 9:399–404

    Article  PubMed  CAS  Google Scholar 

  17. Hillis GS, Bloomfield P (2005) Basic transthoracic echocardiography. Br Med J 7505:1432–1436

    Article  Google Scholar 

  18. Mehta N, Iyawe VI, Cummin AR, Bayley S, Saunders KB, Bennett ED (1985) Validation of a Doppler technique for beat-to-beat measurement of cardiac output. Clin Sci (Lond) 69:377–382

    CAS  Google Scholar 

  19. Andersen UB, Moller S, Bendtsen F, Henriksen JH (2003) Cardiac output determined by echocardiography in patients with cirrhosis: comparison with the indicator dilution technique. Eur J Gastroenterol Hepatol 15:503–507

    Article  PubMed  Google Scholar 

  20. Estagnasie P, Djedaini K, Mier L, Coste F, Dreyfuss D (1997) Measurement of cardiac output by transesophageal echocardiography in mechanically ventilated patients. Comparison with thermodilution. Intensive Care Med 23:753–759

    Article  PubMed  CAS  Google Scholar 

  21. Chew MS, Poelaert J (2003) Accuracy and repeatability of pediatric cardiac output measurement using Doppler: 20-year review of the literature. Intensive Care Med 29:1889–1894

    Article  PubMed  Google Scholar 

  22. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    PubMed  CAS  Google Scholar 

  23. Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15:85–91

    Article  PubMed  CAS  Google Scholar 

  24. Della Rocca G, Costa MG, Coccia C, Pompei L, Di Marco P, Vilardi V, Pietropaoli P (2003) Cardiac output monitoring: aortic transpulmonary thermodilution and pulse contour analysis agree with standard thermodilution methods in patients undergoing lung transplantation. Can J Anaesth 50:707–711

    Article  PubMed  Google Scholar 

  25. Bein B, Worthmann F, Tonner PH, Paris A, Steinfath M, Hedderich J, Scholz J (2004) Comparison of esophageal Doppler, pulse contour analysis, and real-time pulmonary artery thermodilution for the continuous measurement of cardiac output. J Cardiothorac Vasc Anesth 18:185–189

    Article  PubMed  Google Scholar 

  26. Rödig G, Prasser C, Keyl C, Liebold A, Hobbhahn J (1999) Continuous cardiac output measurement: pulse contour analysis vs thermodilution technique in cardiac surgical patients. Br J Anaesth 82:525–530

    PubMed  Google Scholar 

  27. McLean AS, Needham A, Stewart D, Parkin R (1997) Estimation of cardiac output by noninvasive echocardiographic techniques in the critically ill subject. Anaesth Intensive Care 25:250–254

    PubMed  CAS  Google Scholar 

  28. Luchette FA, Porembka D, Davis K Jr, Branson RD, James L, Hurst JM, Johannigman JA, Campbell RS (2000) Effects of body temperature on accuracy of continuous cardiac output measurements. J Invest Surg 13:147–152

    Article  PubMed  CAS  Google Scholar 

  29. Darovic GO (ed) (2002) Hemodynamic monitoring: invasive and noninvasive clinical application, 3rd edn. Saunders, Philadelphia, USA

  30. Medin DL, Brown DT, Wesley R, Cunnion RE, Ognibene FP (1998) Validation of continuous thermodilution cardiac output in critically ill patients with analysis of systematic errors. J Crit Care 13:184–189

    Article  PubMed  CAS  Google Scholar 

  31. Nichols WW, O’Rourke MF (1998) Measuring principles of arterial waves. In: McDonald’s blood flow in arteries: theoretical, experimental and clinical applications. Oxford University Press, New York, pp 114–153

    Google Scholar 

  32. Gardner RM (1981) Direct blood pressure measurement-dynamic response requirements. Anesthesiology 54:227–236

    Article  PubMed  CAS  Google Scholar 

  33. Heimann PA, Murray WB (1993) Construction and use of catheter-manometer systems. J Clin Monit 9:45–53

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by grants of EVO from the Turku University Hospital, Finland, the Juselius Foundation, and the Finnish Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Kuusela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penttilä, J., Snapir, A., Kentala, E. et al. Estimation of cardiac output in a pharmacological trial using a simple method based on arterial blood pressure signal waveform: a comparison with pulmonary thermodilution and echocardiographic methods. Eur J Clin Pharmacol 62, 401–407 (2006). https://doi.org/10.1007/s00228-006-0115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-006-0115-1

Keywords

Navigation