Skip to main content
Log in

Flow and migration of nanoparticle in a single channel

  • Original Paper
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A numerical simulation based on a combined Euler and Lagrange method is investigated in this work to simulate the flow and migration of nanoparticles in a single channel. The motion of discrete nanoparticles is determined by the Lagrangian trajectory method based on the Newton’s second law that includes the influence of the body force, various hydrodynamic forces, the Brownian motion and the thermophoresis force. The coupling of discrete particles with continuous flow is realized through the modification of the source term of the continuous equation. The results reveal the two-phase flow nature of nanoparticle suspensions and their implications to the convective heat transfer of nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

c :

Specific heat (J/kg K)

C s :

Coefficient in Eq. 17

C t :

Coefficient in Eq. 17

C m :

Coefficient in Eq. 17

d p :

Particle diameter (m)

d ij :

Deformation tensor

D T,p :

Thermophoretic coefficient

F :

Force acting on the particle (N/kg)

F D :

Drag force (N/kg)

F G :

Gravity (N/kg)

F B :

Brownian force (N/kg)

F T :

Thermophoretic force (N/kg)

F L :

Saffman’s lift force (N/kg)

F P :

Pressure gradient force (N/kg)

F V :

Virtual mass force (N/kg)

g :

Gravity acceleration (m/s2)

I :

Unit vector

k :

Thermal conductivity of nanofluid (W/mK)

k p :

Particle thermal conductivity (W/mK)

K :

Thermal conductivity ratio (k/k p)

k B :

Boltzmann constant

K n :

Knudsen number

K s :

Coefficient

m p :

Mass of the particle (kg)

p :

Pressure of liquid phase (Pa)

Pe :

Peclet number

R :

Radius (m)

Re :

Reynolds number

S 0 :

Spectral intensity basis

S n,ij :

Spectral intensity

S p :

Source term

t :

Time (s)

T l :

Stress tensor of nanofluids

T :

Temperature (K)

v :

Velocity of nanofluid (m/s)

v l :

Fluid phase velocity (m/s)

v p :

Particle velocity (m/s)

Β :

Inter-phase momentum exchange coefficient

ρ l :

Fluid density (kg/m3)

λ :

Mean free path of the fluid (m)

δ ij :

Kronecker delta function

ζ i :

Zero-mean, unit-variance-independent Gaussian random number

μ l :

Dynamic viscosity of nanofluids (kg/ms)

ν :

Kinetic viscosity (m2/s)

References

  1. Ahuja AS (1975) Augmentation of heat transport in laminar flow of polystyrene suspensions II. Analysis of the data. J Appl Phys 46:3417–3425

    Article  Google Scholar 

  2. Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128:240–250

    Article  Google Scholar 

  3. Chen HS, Ding YL, Tan CQ (2007) Rheological behavior of nanofluids. New J Phys 9:1–25

    Article  Google Scholar 

  4. Ding YL, Alias H, Wen DS, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49:240–250

    Article  Google Scholar 

  5. Ding YL, Wen DS (2004) Particle migration in a flow of a suspension of nanoparticles (nanofluids). Powder Technol 149:84–92

    Article  Google Scholar 

  6. Eapen J, Li J, Yip S (2007) Mechanism of thermal transport in dilute nanocolloids. Phys Rev Lett 98:028302

    Article  Google Scholar 

  7. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863

    Article  MATH  Google Scholar 

  8. Koo J, Kleinstreuer C (2005) Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf 48:2652–2661

    Article  Google Scholar 

  9. Kulkarni DP, Das DK, Chukwu GA (2006) Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). J Nanosci Nanotechnol 6:1150–1154

    Article  Google Scholar 

  10. Heris SZ, Esfahany MN, Etemad G (2006) Investigation of CuO/water nanofluid laminar convective heat transfer through a circular tube. J Enhanc Heat Transf 13:279–289

    Article  Google Scholar 

  11. Heris SZ, Esfahany M, Etemad S (2007) Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow 28:203–210

    Article  Google Scholar 

  12. Leighton D, Acrivos A (1987) The shear-induced migration of particles in concentrated suspensions. J Fluid Mech 181:415–439

    Article  Google Scholar 

  13. Lee J, Mudawar I (2007) Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. Int J Heat Mass Transf 50:452–463

    Article  Google Scholar 

  14. Li A, Ahmadi G (1992) Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci Technol 16:209–226

    Article  Google Scholar 

  15. Maïga S, Nguyen C, Galanis N, Roy G (2004) Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microstruct 35:543–557

    Article  Google Scholar 

  16. Prakash M, Giannelis EP (2007) Mechanism of heat transport in nanofluids. J Comput Aided Mater Des 14:109–117

    Article  Google Scholar 

  17. Roy GC, Nguyen CT, Comeau M (2006) Numerical investigation of electronic component cooling enhancement using nanofluids in a radial flow cooling system. J Enhanc Heat Transf 13:101–115

    Article  Google Scholar 

  18. Sohn CW, Chen MM (1984) Heat transfer enhancement in laminar slurry pipe flow with power law thermal conductivities. ASME J Heat Transf 106:539–542

    Article  Google Scholar 

  19. Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22:385–400

    Article  MATH  Google Scholar 

  20. Talbot L (1980) Thermophoresis of particles in a heated boundary layer. J Fluid Mech 101:737–758

    Article  Google Scholar 

  21. Tseng WJ, Lin KC (2003) Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mater Sci Eng A 355:186–192

    Article  Google Scholar 

  22. Wen DS, Ding YL (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5188–5281

    Google Scholar 

  23. Wen DS, Ding YL (2005) Particle migration and heat transfer in suspensions of nanoparticles flowing through minichannels. Microfluid Nanofluid 1:183–189

    Article  Google Scholar 

  24. Wen DS, Ding YL (2006) Natural convective heat transfer of suspensions of TiO2 nanoparticles (nanofluids). Trans IEEE Nanotechnol 5:220–227

    Article  Google Scholar 

  25. Xuan YM, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707

    Article  MATH  Google Scholar 

  26. Yang Y, Grulke EA, Zhang ZG et al (2005) Rheological behavior of carbon nanotube and graphite nanoparticle dispersions. J Nanosci Nanotechnol 5:571–579

    Article  Google Scholar 

  27. Yang Y, Zhang Z, Grulke E, Anderson W, Wu G (2005) Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf 48:1107–1116

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their thanks to EPSRC for financial support under Grant EP/E065449/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, D., Zhang, L. & He, Y. Flow and migration of nanoparticle in a single channel. Heat Mass Transfer 45, 1061–1067 (2009). https://doi.org/10.1007/s00231-009-0479-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-009-0479-8

Keywords

Navigation