Skip to main content
Log in

Protein Secretion and Membrane Insertion Systems in Gram-Negative Bacteria

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

In contrast to other organisms, gram-negative bacteria have evolved numerous systems for protein export. Eight types are known that mediate export across or insertion into the cytoplasmic membrane, while eight specifically mediate export across or insertion into the outer membrane. Three of the former secretory pathway (SP) systems, type I SP (ISP, ABC), IIISP (Fla/Path) and IVSP (Conj/Vir), can export proteins across both membranes in a single energy-coupled step. A fourth generalized mechanism for exporting proteins across the two-membrane envelope in two distinct steps (which we here refer to as type II secretory pathways [IISP]) utilizes either the general secretory pathway (GSP or Sec) or the twin-arginine targeting translocase for translocation across the inner membrane, and either the main terminal branch or one of several protein-specific export systems for translocation across the outer membrane. We here survey the various well-characterized protein translocation systems found in living organisms and then focus on the systems present in gram-negative bacteria. Comparisons between these systems suggest specific biogenic, mechanistic and evolutionary similarities as well as major differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  • Adams J.M., Cory S. 1998. The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    PubMed  CAS  Google Scholar 

  • Axelsson L., Holck A. 1995. The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Bacteriol. 177:2125–2137

    PubMed  CAS  Google Scholar 

  • Benach J., Chou Y.T., Fak J.J., Itkin A., Nicolae D.D., Smith P.C., Wittrock G., Floyd D.L., Golsaz C.M., Gierasch L.M., Hunt J.F. 2003. Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA. J. Biol. Chem. 278:3628–3638

    PubMed  CAS  Google Scholar 

  • Berks B.C., Palmer T., Sargent F. 2003. The Tat protein translocation pathway and its role in microbial physiology. Adv. Microb. Physiol. 47:187–254

    PubMed  CAS  Google Scholar 

  • Berks B.C., Palmer T., Sargent F. 2005. Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr. Opin. Microbiol. 8:174–181

    PubMed  CAS  Google Scholar 

  • Bogsch E.G., Sargent F., Stanley N.R., Berks B.C., Robinson C., Palmer T. 1998. An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J. Biol. Chem. 273:18003–18006

    PubMed  CAS  Google Scholar 

  • Bohne J., Yim A., Binns A.N. 1998. The Ti plasmid increases the efficiency of Agrobacterium tumefaciens as a recipient in virB-mediated conjugal transfer of an IncQ plasmid. Proc. Natl. Acad. Sci. USA 95:7057–7062

    PubMed  CAS  Google Scholar 

  • Bos M.P., Tefsen B., Geurtsen J., Tommassen J. 2004. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc. Natl. Acad. Sci. USA 101:9417–9422

    PubMed  CAS  Google Scholar 

  • Burghout P., Beckers F., de Wit E., van Boxtel R., Cornelis G.R., Tommassen J., Koster M. 2004a. Role of the pilot protein YscW in the biogenesis of the YscC secretin in Yersinia enterocolitica. J. Bacteriol. 186:5366–5375

    CAS  Google Scholar 

  • Burghout P., van Boxtel R., Van Gelder P., Ringler P., Muller S.A., Tommassen J., Koster M. 2004b. Structure and electrophysiological properties of the YscC secretin from the type III secretion system of Yersinia enterocolitica. J. Bacteriol. 186:4645–4654

    CAS  Google Scholar 

  • Burrows L.L. 2005. Weapons of mass retraction. Mol. Microbiol. 57:878–888

    PubMed  CAS  Google Scholar 

  • Busch W., Saier M.H. Jr. 2002. The transporter classification (TC) system, 2002. CRC Crit. Rev. Biochem. Mol. Biol. 37:287–337

    CAS  Google Scholar 

  • Cao T.B., Saier M.H. Jr. 2001. Conjugal type IV macromolecular transfer systems of gram-negative bacteria: Organismal distribution, structural constraints and evolutionary conclusions. Microbiology 147:3201–3214

    PubMed  CAS  Google Scholar 

  • Cao T.B., Saier M.H. Jr. 2003. The general protein secretory pathway: Phylogenetic analyses leading to evolutionary conclusions. Biochim. Biophys. Acta 1609:115–125

    PubMed  CAS  Google Scholar 

  • Chami M., Guilvout I., Gregorini M., Remigy H.W., Muller S.A., Valerio M., Engel A., Pugsley A.P., Bayan N. 2005. Structural insights into the secretin PulD and its trypsin-resistant core. J. Biol. Chem. 280:37732–37741

    PubMed  CAS  Google Scholar 

  • Chang G., Roth C.B. 2001. Structure of MsbA from E. coli: A homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science 293:1793–1800

    PubMed  CAS  Google Scholar 

  • Chen I., Christie P.J., Dubnau D. 2005. The ins and outs of DNA transfer in bacteria. Science 310:1456–1460

    PubMed  CAS  Google Scholar 

  • Christie P.J. 2001. Type IV secretion: Intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol. Microbiol. 40:294–305

    PubMed  CAS  Google Scholar 

  • Christie P.J., Cascales E. 2005. Structural and dynamic properties of bacterial type IV secretion systems. Mol. Membr. Biol. 22:51–61

    PubMed  CAS  Google Scholar 

  • Collins R.F., Davidsen L., Derrick J.P., Ford R.C., Tonjum T. 2001. Analysis of the PilQ secretion from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J. Bacteriol. 183:3825–3832

    PubMed  CAS  Google Scholar 

  • Coombes B.K., Finlay B.B. 2005. Insertion of the bacterial type III translocon: Not your average needle stick. Trends Microbiol. 13:92–95

    PubMed  CAS  Google Scholar 

  • Cornelis G.R. 2002. The Yersinia Ysc-Yop “type III” weaponry. Nat. Rev. Mol. Cell. Biol. 3:742–752

    PubMed  CAS  Google Scholar 

  • Cotter S.E., Surana N.K., St. Geme J.W. III. 2005. Trimeric autotransporters: A distinct subfamily of autotransporter proteins. Trends Microbiol. 13:199–205

    PubMed  CAS  Google Scholar 

  • Crompton M., Barksby E., Johnson N., Capano M. 2002. Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie 84:143–152

    PubMed  CAS  Google Scholar 

  • Dabney-Smith C., Mori H., Cline K. 2006. Oligomers of Tha4 organize at the thylakoid Tat translocase during protein transport. J. Biol. Chem. 281:5476–5483

    PubMed  CAS  Google Scholar 

  • Dinh T., Paulsen I.T., Saier M.H. Jr. 1994. A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. J. Bacteriol. 176:3825–3831

    PubMed  CAS  Google Scholar 

  • Doerrler W.T., Raetz C.R. 2005. Loss of outer membrane proteins without inhibition of lipid export in an Escherichia coli YaeT mutant. J. Biol. Chem. 280:27679–27687

    PubMed  CAS  Google Scholar 

  • Dubnau D. 1999. DNA uptake in bacteria. Annu. Rev. Microbiol. 53:217–244

    PubMed  CAS  Google Scholar 

  • Economou A. 2002. Bacterial secretome: The assembly manual and operating instructions. Mol. Membr. Biol. 19:159–169

    PubMed  CAS  Google Scholar 

  • Ertel F., Mirus O., Bredemeier R., Moslavac S., Becker T., Schleiff E. 2005. The evolutionarily related β-barrel polypeptide transporters from Pisum sativum and Nostoc PCC7120 contain two distinct functional domains. J. Biol. Chem. 280:28281–28289

    PubMed  CAS  Google Scholar 

  • Eswaran J., Koronakis E., Higgins M.K., Hughes C., Koronakis V. 2004. Three’s company: Component structures bring a closer view of tripartite drug efflux pumps. Curr. Opin. Struct. Biol. 14:741–747

    PubMed  CAS  Google Scholar 

  • Federici L., Du D., Walas F., Matsumura H., Fernandez-Recio J., McKeegan K.S., Borges-Walmsley M.I., Luisi B.F., Walmsley A.R. 2005. The crystal structure of the outer membrane protein VceC from the bacterial pathogen Vibrio cholerae at 1.8 Å resolution. J. Biol. Chem. 280:15307–15314

    PubMed  CAS  Google Scholar 

  • Filloux A. 2004. The underlying mechanisms of type II protein secretion. Biochim. Biophys. Acta 1694:163–179

    PubMed  CAS  Google Scholar 

  • Francetic O., Pugsley A.P. 2005. Towards the identification of type II secretion signals in a nonacylated variant of pullulanase from Klebsiella oxytoca. J. Bacteriol. 187:7045–7055

    PubMed  CAS  Google Scholar 

  • Froderberg L., Houben E., Samuelson J.C., Chen M., Park S.K., Phillips G.J., Dalbey R., Luirink J., De Gier J.W. 2003. Versatility of inner membrane protein biogenesis in Escherichia coli. Mol. Microbiol. 47:1015–1027

    PubMed  CAS  Google Scholar 

  • Geller B.L. 1991. Energy requirements for protein translocation across the Escherichia coli inner membrane. Mol. Microbiol. 5:2093–2098

    PubMed  CAS  Google Scholar 

  • Genevrois S., Steeghs L., Roholl P., Letesson J.J., van der Ley P. 2003. The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane. EMBO J. 22:1780–1789

    PubMed  CAS  Google Scholar 

  • Gentle I., Gabriel K., Beech P., Waller R., Lithgow T. 2004. The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J. Cell Biol. 164:19–24

    PubMed  CAS  Google Scholar 

  • Gentle I.E., Burri L., Lithgow T. 2005. Molecular architecture and function of the Omp85 family of proteins. Mol. Microbiol. 58:1216–1225

    Article  PubMed  CAS  Google Scholar 

  • Gerard F., Cline K. 2006. Efficient twin arginine translocation (Tat) pathway transport of a precursor protein covalently anchored to its initial cpTatC binding site. J. Biol. Chem. 281:6130–6135

    PubMed  CAS  Google Scholar 

  • Gohlke S.F., De Leeuw E., Stanley N.R., Palmer T., Saibil H.R., Berks B.C. 2001. Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. Eur. J. Biochem. 268:3361–3367

    PubMed  Google Scholar 

  • Gralnick J.A., Vali H., Lies D.P., Newman D.K. 2006. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc. Natl. Acad. Sci. USA 103:4669–4674

    PubMed  CAS  Google Scholar 

  • Hamilton H.L., Dominguez N.M., Schwartz K.J., Hackett K.T., Dillard J.P. 2005. Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol. Microbiol. 55:1704–1721

    PubMed  CAS  Google Scholar 

  • Hansen-Wester I., Hensel M. 2001. Salmonella pathogenicity islands encoding type III secretion systems. Microbes Infect. 3:549–559

    PubMed  CAS  Google Scholar 

  • Harley K.T., Djordjevic G.M., Tseng T.-T., Saier M.H. Jr. 2000. Membrane-fusion protein homologues in gram-positive bacteria. Mol. Microbiol. 36:516–517

    PubMed  CAS  Google Scholar 

  • Hicks M.G., Lee P.A., Georgiou G., Berks B.C., Palmer T. 2005. Positive selection for loss-of-function tat mutations identifies critical residues required for TatA activity. J. Bacteriol. 187:2920–2925

    PubMed  CAS  Google Scholar 

  • Higgins C.F., Linton K.J. 2004. The ATP switch model for ABC transporters. Nat. Struct. Mol. Biol. 11:918–926

    PubMed  CAS  Google Scholar 

  • Higgins M.K., Bokma E., Koronakis E., Hughes C., Koronakis V. 2004a. Structure of the periplasmic component of a bacterial drug efflux pump. Proc. Natl. Acad. Sci. USA 101:9994–9999

    CAS  Google Scholar 

  • Higgins M.K., Eswaran J., Edwards P., Schertler G.F., Hughes C., Koronakis V. 2004b. Structure of the ligand-blocked periplasmic entrance of the bacterial multidrug efflux protein TolC. J. Mol. Biol. 342:697–702

    CAS  Google Scholar 

  • Holland I.B., Schmitt L., Young J. 2005. Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway. Mol. Membr. Biol. 22:29–39

    PubMed  CAS  Google Scholar 

  • Hueck C.J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62:379–433

    PubMed  CAS  Google Scholar 

  • Ito K. 1992. SecY and integral membrane components of the Escherichia coli protein translocation system. Mol. Microbiol. 6:2423–2428

    Article  PubMed  CAS  Google Scholar 

  • Jacob-Dubuisson F., Buisine C., Willery E., Renauld-Mongenie G., Locht C. 1997. Lack of functional complementation between Bordetella pertussis filamentous hemagglutinin and Proteus mirabilis HpmA hemolysin secretion machineries. J. Bacteriol. 179:775–783

    PubMed  CAS  Google Scholar 

  • Jacob-Dubuisson F., El-Hamel C., Saint N., Guedin S., Willery E., Molle G., Locht C. 1999. Channel formation by FhaC, the outer membrane protein involved in the secretion of the Bordetella pertussis filamentous hemagglutinin. J. Biol. Chem. 274:37731–37735

    PubMed  CAS  Google Scholar 

  • Jacob-Dubuisson F., Locht C., Antoine R. 2001. Two-partner secretion in gram-negative bacteria: A thrifty, specific pathway for large virulence proteins. Mol. Microbiol. 40:306–313

    PubMed  CAS  Google Scholar 

  • Johnson T.L., Abendroth J., Hol W.G., Sandkvist M. 2006. Type II secretion: From structure to function. FEMS Microbiol. Lett. 255:175–186

    PubMed  CAS  Google Scholar 

  • Jongbloed J.D.H., Martin U., Antelmann H., Hecker M., Tjalsma H., Venema G., Bron S., van Dijl J.M., Müller J. 2000. TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J. Biol. Chem. 275:41350–41357

    PubMed  CAS  Google Scholar 

  • Karavolos M.H., Roe A.J., Wilson M., Henderson J., Lee J.J., Gally D.L., Khan C.M. 2005. Type III secretion of the Salmonella effector protein SopE is mediated via an N-terminal amino acid signal and not an mRNA sequence. J. Bacteriol. 187:1559–1567

    PubMed  CAS  Google Scholar 

  • Karnholz A., Hoefler C., Odenbreit S., Fischer W., Hofreuter D., Haas R. 2006. Functional and topological characterization of novel components of the comB DNA transformation competence system in Helicobacter pylori. J. Bacteriol. 188:882–893

    PubMed  CAS  Google Scholar 

  • Karpowich N.K., Huang H.H., Smith P.C., Hunt J.F. 2003. Crystal structures of the BtuF periplasmic-binding protein for vitamin B12 suggest a functionally important reduction in protein mobility upon ligand binding. J. Biol. Chem. 278:8429–8434

    PubMed  CAS  Google Scholar 

  • Kim, S.H., Chao, Y. Saier, M.H., Jr. 2006. Protein-translocating trimeric autotransporters of gram-negative bacteria. J. Bacteriol. 188:5655–5667

    PubMed  CAS  Google Scholar 

  • Kinch L.N., Saier M.H. Jr. Grishin N.V. 2002. Sec61β – a component of the archaeal protein secretory system. Trends Biochem. Sci. 27:170–171

    PubMed  CAS  Google Scholar 

  • Könninger U.W., Hobbie S., Benz R., Braun V. 1999. The haemolysin-secreting ShlB protein of the outer membrane of Serratia marcescens: Determination of surface-exposed residues and formation of ion-permeable pores by ShlB mutants in artificial lipid bilayer membranes. Mol. Microbiol. 32:1212–1225

    PubMed  Google Scholar 

  • Koronakis V. 2003. TolC – the bacterial exit duct for proteins and drugs. FEBS Lett. 555:66–71

    PubMed  CAS  Google Scholar 

  • Koronakis V., Eswaran J., Hughes C. 2004. Structure and function of TolC: The bacterial exit duct for proteins and drugs. Annu. Rev. Biochem. 73:467–489

    PubMed  CAS  Google Scholar 

  • Koronakis V., Sharff A., Koronakis E., Luisi B., Hughes C. 2000. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919

    PubMed  CAS  Google Scholar 

  • Kozjak V., Wiedemann N., Milenkovic D., Lohaus C., Meyer H.E., Guiard B., Meisinger C., Pfanner N. 2003. An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J. Biol. Chem. 278:48520–48523

    PubMed  CAS  Google Scholar 

  • Kuan G., Dassa E., Saurin W., Hofnung M., Saier M.H. Jr. 1995. Phylogenic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146:271–278

    PubMed  CAS  Google Scholar 

  • Lee S.H., Galán J.E. 2004. Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol. Microbiol. 51:483–495

    PubMed  CAS  Google Scholar 

  • Li J., Wolf S.G., Elbaum M., Tzfira T. 2005. Exploring cargo transport mechanics in the type IV secretion systems. Trends Microbiol. 13:295–298

    PubMed  Google Scholar 

  • Lister R., Hulett J.M., Lithgow T., Whelan J. 2005. Protein import into mitochondria: Origins and functions today. Mol. Membr. Biol. 22:87–100

    PubMed  CAS  Google Scholar 

  • Locher K.P., Lee A.T., Rees D.C. 2002. The E. coli BtuCD structure: A framework for ABC transporter architecture and mechanism. Science 296:1091–1098

    PubMed  CAS  Google Scholar 

  • Loveless B.J., Saier M.H. Jr. 1997. A novel family of channel-forming, autotransporting, bacterial virulence factors. Mol. Membr. Biol. 14:113–123

    PubMed  CAS  Google Scholar 

  • Luirink J., Samuelsson T., de Gier J.-W. 2001. YidC/Oxa1p/Alb3: Evolutionarily conserved mediators of membrane protein assembly. FEBS Lett. 501:1–5

    PubMed  CAS  Google Scholar 

  • Luirink J., von Heijne G., Houben E., de Gier J.W. 2005. Biogenesis of inner membrane proteins in Escherichia coli. Annu. Rev. Microbiol. 59:329–355

    PubMed  CAS  Google Scholar 

  • Lybarger S.R., Sandkvist M. 2004. A hitchhiker’s guide to type IV secretion. Science 304:1122–1123

    PubMed  CAS  Google Scholar 

  • Ma Q., Zhai Y., Schneider C.J., Ramseier T.M., Saier M.H. Jr. 2003. Protein secretion systems of Pseudomonas aeruginosa and P. fluorescens. Biochim. Biophys. Acta 1611:223–233

    CAS  Google Scholar 

  • Mangels D., Mathers J., Bolhuis A., Robinson C. 2005. The core TatABC complex of the twin-arginine translocase in Escherichia coli: TatC drives assembly where TatA is essential for stability. J. Mol. Biol. 345:415–423

    PubMed  CAS  Google Scholar 

  • Milenkovic D., Kozjak V., Wiedemann N., Lohaus C., Meyer H.E., Guiard B., Pfanner N., Meisinger C. 2004. Sam35 of the mitochondrial protein sorting and assembly machinery is a peripheral outer membrane protein essential for cell viability. J. Biol. Chem. 279:22781–22785

    PubMed  CAS  Google Scholar 

  • Missiakas D., Betton J.M., Raina S. 1996. New components of protein folding in extracytoplasmic compartments of Escherichia coli, SurA, FkpA and Skp/OmpH. Mol. Microbiol. 21:871–886

    PubMed  CAS  Google Scholar 

  • Mol O., Oudega B. 1996. Molecular and structural aspects of fimbriae biosynthesis and assembly in Escherichia coli. FEMS Microbiol. Rev. 19:25–52

    PubMed  CAS  Google Scholar 

  • Mota L.J., Cornelis G.R. 2005. The bacterial injection kit: Type III secretion systems. Ann. Med. 37:234–249

    PubMed  CAS  Google Scholar 

  • Müller M. 2005. Twin-arginine-specific protein export in Escherichia coli. Res. Microbiol. 156:131–136

    PubMed  Google Scholar 

  • Müller M., Klosgen R.B. 2005. The Tat pathway in bacteria and chloroplasts. Mol. Membr. Biol. 22:113–121

    PubMed  Google Scholar 

  • Müller M., Koch H.-G., Beck K., Schäfer U. 2001. Protein traffic in bacteria: Multiple routes from the ribosome to and across the membrane. Prog. Nucleic Acid Res. Mol. Biol. 66:107–157

    Article  PubMed  Google Scholar 

  • Newman C.L., Stathopoulos C. 2004. Autotransporter and two-partner secretion: Delivery of large-size virulence factors by gram-negative bacterial pathogens. Crit. Rev. Microbiol. 30:275–286

    PubMed  CAS  Google Scholar 

  • Nguyen L., Paulsen I.T., Tchieu J., Hueck C.J., Saier M.H. Jr. 2000. Phylogenetic analyses of the constituents of type III protein secretion systems. J. Mol. Microbiol. Biotechnol. 2:125–144

    PubMed  CAS  Google Scholar 

  • Nouwen N., Ranson N., Saibil H., Wolpensinger B., Engel A., Ghazi A., Pugsley A.P. 1999. Secretin PulD: Association with pilot PulS, structure, and ion-conducting channel formation. Proc. Natl. Acad. Sci. USA 96:8173–8177

    PubMed  CAS  Google Scholar 

  • Nouwen N., van der Laan M., Driessen A.J. 2001. SecDFyajC is not required for the maintenance of the proton motive force. FEBS Lett. 508:103–106

    PubMed  CAS  Google Scholar 

  • Oloo E.O., Tieleman D.P. 2004. Conformational transitions induced by the binding of MgATP to the vitamin B12 ATP-binding cassette (ABC) transporter BtuCD. J. Biol. Chem. 279:45013–45019

    PubMed  CAS  Google Scholar 

  • Olsson J., Edqvist P.J., Bröms J.E., Forsberg A., Wolf-Watz H., Francis M.S. 2004. The YopD translocator of Yersinia pseudotuberculosis is a multifunctional protein comprised of discrete domains. J. Bacteriol. 186:4110–4123

    PubMed  CAS  Google Scholar 

  • Palmer T., Sargent F., Berks B.C. 2005. Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol. 13:175–180

    PubMed  CAS  Google Scholar 

  • Pantoja M., Chen L., Chen Y., Nester E.W. 2002. Agrobacterium type IV secretion is a two-step process in which export substrates associate with the virulence protein VirJ in the periplasm. Mol. Microbiol. 45:1325–1335

    PubMed  CAS  Google Scholar 

  • Paulsen I.T., Beness A.M., Saier M.H. Jr. 1997a. Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. Microbiology 143:2685–2699

    Article  CAS  Google Scholar 

  • Paulsen I.T., Park J.H., Choi P.S., Saier M.H. Jr. 1997b. A family of gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. FEMS Microbiol. Lett. 156:1–8

    Article  CAS  Google Scholar 

  • Peabody C.R., Chung Y.-J., Yen M.-R., Vidal-Ingigliardi D., Pugsley A.P., Saier M.H. Jr. 2003. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149:3051–3072

    PubMed  CAS  Google Scholar 

  • Pivetti C.D., Yen M.-R., Miller S., Busch W., Tseng Y.-H., Booth I.R., Saier M.H. Jr. 2003. Two families of mechanosensitive channel proteins. Microbiol. Mol. Biol. Rev. 67:66–85

    PubMed  CAS  Google Scholar 

  • Plano G.V., Day J.B., Ferracci F. 2001. Type III export: New uses for old pathway. Mol. Microbiol. 40:284–293

    PubMed  CAS  Google Scholar 

  • Pohlschroder M., Hartmann E., Hand N.J., Dilks K., Haddad A. 2005. Diversity and evolution of protein translocation. Annu. Rev. Microbiol. 59:91–111

    PubMed  CAS  Google Scholar 

  • Quadri L.E., Kleerebezem M., Kuipers O.P., de Vos W.M., Roy K.L., Vederas J.C., Stiles M.E. 1997. Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: Evidence for global inducer-mediated transcriptional regulation. J. Bacteriol. 179:6163–6171

    PubMed  CAS  Google Scholar 

  • Ramamurthi K.S., Schneewind O. 2003a. Substrate recognition by the Yersinia type III protein secretion machinery. Mol. Microbiol. 50:1095–1102

    CAS  Google Scholar 

  • Ramamurthi K.S., Schneewind O. 2003b. Yersinia yopQ mRNA encodes a bipartite type III secretion signal in the first 15 codons. Mol. Microbiol. 50:1189–1198

    CAS  Google Scholar 

  • Ramanculov E., Young R. 2001. Genetic analysis of the T4 holin: Timing and topology. Gene 265:25–36

    PubMed  CAS  Google Scholar 

  • Rapoport T.A., Goder V., Heinrich S.U., Matlack K.E. 2004. Membrane-protein integration and the role of the translocation channel. Trends Cell. Biol. 14:568–575

    PubMed  CAS  Google Scholar 

  • Rapoport T.A., Jungnickel B., Kutay U. 1996. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu. Rev. Biochem. 65:271–303

    PubMed  CAS  Google Scholar 

  • Reyes C.L., Chang G. 2005. Lipopolysaccharide stabilizes the crystal packing of the ABC transporter MsbA. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 61:655–658

    Google Scholar 

  • Robinson C., Woolhead C., Edwards W. 2000. Transport of proteins into and across the thylakoid membrane. J. Exp. Bot. 51(Special issue):369–374

    PubMed  CAS  Google Scholar 

  • Roggenkamp, A., Ackermann, N., Jacobi, C.A., Truelzsch, K., Hoffmann, H., Heesemann, J. 2003. Molecular analysis of transport and oligomerization of the Yersinia enterocolitica adhesin YasA. J. Bactorial. 185:3735–3744

    CAS  Google Scholar 

  • Ryndak M.B., Chung H., London E., Bliska J.B. 2005. Role of predicted transmembrane domains for type III translocation, pore formation, and signaling by the Yersinia pseudotuberculosis YopB protein. Infect. Immun. 73:2433–2443

    PubMed  CAS  Google Scholar 

  • Saier M.H. Jr. 1998. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. In: Poole R.K., editor. Advances in Microbial Physiology, Academic Press, San Diego pp 81–136

    Google Scholar 

  • Saier M.H. Jr. 1999. A functional-phylogenetic system for the classification of transport proteins. J. Cell. Biochem. Suppl. 32/33:84–94

    Google Scholar 

  • Saier M.H. Jr. 2000a. A functional/phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev. 64:354–411

    CAS  Google Scholar 

  • Saier M.H. Jr. 2000b. Families of proteins forming transmembrane channels. J. Membr. Biol. 175:165–180

    CAS  Google Scholar 

  • Saier M.H. Jr. 2004. Evolution of bacterial type III protein secretion systems. Trends Microbiol. 12:113–115

    PubMed  CAS  Google Scholar 

  • Saier M.H. Jr., Tran C.V., Barabote R.D. 2006. TCDB: The transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res. 34:D181–D186

    PubMed  CAS  Google Scholar 

  • Saier M.H., Jr., Tseng T.-T. 1999. Evolutionary origins of transmembrane transport systems. In: Broome-Smith J.K., Baumberg S., Stirling C.J., Ward F.B. editors. Transport of Molecules Across Microbial Membranes. Symposium 58, Society for General Microbiology, Cambridge University Press, Cambridge pp 252–274

    Google Scholar 

  • Sambasivarao D., Dawson H.A., Zhang G., Shaw G., Hu J., Weiner J.H. 2001. Investigation of Escherichia coli dimethyl sulfoxide reductase assembly and processing in strains defective for the sec-independent protein translocation system membrane targeting and translocation. J. Biol. Chem. 276:20167–20174

    PubMed  CAS  Google Scholar 

  • Sambasivarao D., Turner R.J., Bilous P.T., Rothery R.A., Shaw G., Weiner J.H. 2002. Differential effects of a molybdopterin synthase sulfurylase (moeB) mutation on Escherichia coli molybdoenzyme maturation. Biochem. Cell. Biol. 80:435–443

    PubMed  CAS  Google Scholar 

  • Sambasivarao D., Turner R.J., Simala-Grant J.L., Shaw G., Hu J., Weiner J.H. 2000. Multiple roles for the twin arginine leader sequence of dimethyl sulfoxide reductase of Escherichia coli. J. Biol. Chem. 275:22526–22531

    PubMed  CAS  Google Scholar 

  • Sandkvist M, 2001. Biology of type II secretion. Mol. Microbiol. 40:271–283

    PubMed  CAS  Google Scholar 

  • Sargent F., Berks B.C., Palmer T. 2006. Pathfinders and trailblazers: a prokaryotic targeting system for transport of folded proteins. FEMS Microbiol. Lett. 254:198–207

    Article  PubMed  CAS  Google Scholar 

  • Sargent F., Gohlke U., De Leeuw E., Stanley N.R., Palmer T., Saibil H.R., Berks B.C. 2001. Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. Eur. J. Biochem. 268:3361–3667

    PubMed  CAS  Google Scholar 

  • Sargent F., Stanley N.R., Berks B.C., Palmer T. 1999. Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J. Biol. Chem. 274:36073–36082

    PubMed  CAS  Google Scholar 

  • Sauer F.G., Knight S.D., Waksman G.J., Hultgren S.J. 2000. PapD-like chaperones and pilus biogenesis. Semin. Cell Dev. Biol. 11:27–34

    PubMed  CAS  Google Scholar 

  • Scheuring J., Braun N., Nothdurft L., Stumpf M., Veenendaal A.K., Kol S., van der Does C., Driessen A.J., Weinkauf S. 2005. The oligomeric distribution of SecYEG is altered by SecA and translocation ligands. J. Mol. Biol. 354:258–271

    PubMed  CAS  Google Scholar 

  • Schleiff E., Soll J., Küchler M., Kühlbrandt W., Harrer R. 2003. Characterization of the translocon of the outer envelope of chloroplasts. J. Cell Biol. 160:541–551

    PubMed  CAS  Google Scholar 

  • Schmidt S.A., Bieber D., Ramer S.W., Hwang J., Wu C.Y., Schoolnik G. 2001. Structure-function analysis of BfpB, a secretin-like protein encoded by the bundle-forming-pilus operon of enteropathogenic Escherichia coli. J. Bacteriol. 183:4848–4859

    PubMed  CAS  Google Scholar 

  • Schmitt L., Benabdelhak H., Blight M.A., Holland I.B., Stubbs M.T. 2003. Crystal structure of the nucleotide-binding domain of the ABC-transporter haemolysin B: Identification of a variable region within ABC helical domains. J. Mol. Biol. 330:333–342

    PubMed  CAS  Google Scholar 

  • Scotti P.A., Valent Q.A., Manting E.H., Urbanus M.L., Driessen A.J., Oudega B., Luirink J. 1999. SecA is not required for signal recognition particle-mediated targeting and initial membrane insertion of a nascent inner membrane protein. J. Biol. Chem. 274:29883–29888

    PubMed  CAS  Google Scholar 

  • Sijbrandi R., Urbanus M.L., ten Hagen-Jongman C.M., Bernstein H.D., Oudega B., Otto B.R., Luirink J. 2003. Signal recognition particle (SRP)-mediated targeting and Sec-dependent translocation of an extracellular Escherichia coli protein. J. Biol. Chem. 278:4654–4659

    PubMed  CAS  Google Scholar 

  • Stanley N.R., Sargent F., Buchanan G., Shi J., Stewart V., Palmer T., Berks B.C. 2002. Behaviour of topological marker proteins targeted to the Tat protein transport pathway. Mol. Microbiol. 43:1005–1021

    PubMed  CAS  Google Scholar 

  • Steiner J.M., Yusa F., Pompe J.A., Loffelhardt W. 2005. Homologous protein import machineries in chloroplasts and cyanelles. Plant J. 44:646–652

    PubMed  CAS  Google Scholar 

  • Takamatsu H., Bunai K., Horinaka T., Oguro A., Nakamura K., Watabe K., Yamane K. 1997. Identification of a region required for binding to presecretory protein in Bacillus subtilis Ffh, a homologue of the 54-kDa subunit of mammalian signal recognition particle. Eur. J. Biochem. 248:575–582

    PubMed  CAS  Google Scholar 

  • Tam R., Saier M.H. Jr. 1993. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol. Rev. 57:320–346

    PubMed  CAS  Google Scholar 

  • Thanassi D.G. 2002. Ushers and secretins: Channels for the secretion of folded proteins across the bacterial outer membrane. J. Mol. Microbiol. Biotechnol. 4:11–20

    PubMed  CAS  Google Scholar 

  • Thanassi D.G., Hultgren S.J. 2000. Assembly of complex organelles: Pilus biogenesis in gram-negative bacteria as a model system. Methods 20:111–126

    PubMed  CAS  Google Scholar 

  • Thanassi D.G., Stathopoulos C., Karkal A., Li H. 2005. Protein secretion in the absence of ATP: The autotransporter, two-partner secretion and chaperone/usher pathways of gram-negative bacteria. Mol. Membr. Biol. 22:63–72

    PubMed  CAS  Google Scholar 

  • Theg, S.M., Cline, K., Finazzi, G., Wollman, F.A. 2005. The energetics of the chloroplast Tat protein transport pathway revisited. Trends Plant Sci. 10:153–154

    Google Scholar 

  • Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876–4882

    PubMed  CAS  Google Scholar 

  • Touze T., Eswaran J., Bokma E., Koronakis E., Hughes C., Koronakis V. 2004. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol. Microbiol. 53:697–706

    PubMed  CAS  Google Scholar 

  • Tziatzios C., Schubert D., Lotz M., Gundogan D., Betz H., Schagger H., Haase W., Duong F., Collinson I. 2004. The bacterial protein-translocation complex: SecYEG dimers associate with one or two SecA molecules. J. Mol. Biol. 340:513–524

    PubMed  CAS  Google Scholar 

  • van den Berg B., Clemons W.M. Jr., Collinson I., Modis Y., Hartmann E., Harrison S.C., Rapoport T.A. 2004. X-ray structure of a protein-conducting channel. Nature 427:36–44

    PubMed  Google Scholar 

  • van der Laan M., Nouwen N.P., Driessen A.J. 2005. YidC – an evolutionary conserved device for the assembly of energy-transducing membrane protein complexes. Curr. Opin. Microbiol. 8:182–187

    PubMed  Google Scholar 

  • van Dijl J.M., Braun P.G., Robinson C., Quax W.J., Antelmann H., Hecker M., Muller J., Tjalsma H., Bron S., Jongbloed J.D. 2002. Functional genomic analysis of the Bacillus subtilis Tat pathway for protein secretion. J. Biotechnol. 98:243–254

    PubMed  Google Scholar 

  • Van Rosmalen M., Saier M.H. Jr. 1993. Structural and evolutionary relationships between two families of bacterial extracytoplasmic chaperone proteins which function cooperatively in fimbrial assembly. Res. Microbiol. 144:507–527

    PubMed  Google Scholar 

  • Veiga E., Sugawara E., Nikaido H., de Lorenzo V., Fernández L.A. 2002. Export of autotransported proteins proceeds through an oligomeric ring shape by C-terminal domains. EMBO J. 21:2122–2131

    PubMed  CAS  Google Scholar 

  • Venema K., Dost M.H., Beun P.A., Haandrikman A.J., Venema G., Kok J. 1996. The genes for secretion and maturation of lactococcins are located on the chromosome of Lactococcus lactis IL1403. Appl. Environ. Microbiol. 62:1689–1692

    PubMed  CAS  Google Scholar 

  • Vignon G., Kohler R., Larquet E., Giroux S., Prevost M.C., Roux P., Pugsley A.P. 2003. Type IV-like pili formed by the type II secreton: Specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol. 185:3416–3428

    PubMed  CAS  Google Scholar 

  • Voulhoux R., Bos M.P., Geurtsen J., Mols M., Tommassen J. 2003. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262–265

    PubMed  CAS  Google Scholar 

  • Wang I.-N., Smith D.L., Young R. 2000. Holins: The protein clocks of bacteriophage infections. Annu. Rev. Microbiol. 54:799–825

    PubMed  CAS  Google Scholar 

  • Wickner W., Schekman R. 2005. Protein translocation across biological membranes. Science 310:1452–1456

    PubMed  CAS  Google Scholar 

  • Wiedemann N., Kozjak V., Chacinska A., Schönfisch B., Rospert S., Ryan M.T., Pfanner N., Meisinger C. 2003. Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424:565–571

    PubMed  CAS  Google Scholar 

  • Winans S.C., Burns D.L., Christie P.J. 1996. Adaptation of a conjugal transfer system for the export of pathogenic macromolecules. Trends Microbiol. 4:64–68

    PubMed  CAS  Google Scholar 

  • Wu T., Malinverni J., Ruiz N., Kim S., Silhavy T.J., Kahne D. 2005. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121:235–245

    PubMed  CAS  Google Scholar 

  • Yamane K., Bunai K., Kakeshita H. 2004. Protein traffic for secretion and related machinery of Bacillus subtilis. Biosci. Biotechnol. Biochem. 68:2007–2023

    PubMed  CAS  Google Scholar 

  • Yen M.-R., Harley K.T., Tseng Y.-H., Saier M.H. Jr. 2001. Phylogenetic and structural analyses of the Oxa1 family of protein translocases. FEMS Microbiol Lett. 204:223–231

    PubMed  CAS  Google Scholar 

  • Yen M.-R., Peabody C.R., Partovi S.M., Zhai Y., Tseng Y.-H., Saier M.H. Jr. 2002a. Protein-translocating outer membrane porins of gram-negative bacteria. Biochim. Biophys. Acta 1562:6–31

    CAS  Google Scholar 

  • Yen M.-R., Tseng Y.-H., Nguyen E.H., Wu L.F., Saier M.H. Jr. 2002b. Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch. Microbiol. 177:441–450

    CAS  Google Scholar 

  • Yi L., Dalbey R.E. 2005. Oxa1/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria. Mol. Membr. Biol. 22:101–111

    PubMed  CAS  Google Scholar 

  • Yip C.K., Kimbrough T.G., Felise H.B., Vuckovic M., Thomas N.A., Pfuetzner R.A., Frey E.A., Finlay B.B., Miller S.I., Strynadka N.C. 2005. Structural characterization of the molecular platform for type III secretion system assembly. Nature 435:702–707

    PubMed  CAS  Google Scholar 

  • Young G.M., Schmiel D.H., Miller V.L. 1999. A new pathway for the secretion of virulence factors by bacteria, the flagellar export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci. USA 96:6456–6461

    PubMed  CAS  Google Scholar 

  • Young R. 2002. Bacteriophage holins: Deadly diversity. J. Mol. Microbiol. Biotechnol. 4:21–36

    PubMed  CAS  Google Scholar 

  • Young R., Bläsi U. 1995. Holins: Form and function in bacteriophage lysis. FEMS Microbiol. Rev. 17:191–205

    PubMed  CAS  Google Scholar 

  • Zhai Y., Tchieu J., Saier M.H. Jr. 2002. A web-based Tree View (TV) program for the visualization of phylogenetic trees. J. Mol. Microbiol. Biotechnol. 4:69–70

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

I thank both Dr. Chin Hong Ma and Ms. Mary Beth Hiller for useful discussions and contributions to the preparation of this manuscript. This work was supported by National Institutes of Health grant GM077402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton H. Saier Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saier, M.H. Protein Secretion and Membrane Insertion Systems in Gram-Negative Bacteria. J Membrane Biol 214, 75–90 (2006). https://doi.org/10.1007/s00232-006-0049-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0049-7

Keywords

Navigation