Skip to main content
Log in

Structure and Function of Sodium-coupled GABA and Glutamate Transporters

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Neurotransmitter transporters are key elements in the termination of the synaptic actions of the neurotransmitters. They use the energy stored in the electrochemical ion gradients across the plasma membrane of neurons and glial cells for uphill transport of the transmitters into the cells surrounding the synapse. Therefore specific transporter inhibitors can potentially be used as novel drugs for neurological disease. Sodium-coupled neurotransmitter transporters belong to either of two distinct families. The glutamate transporters belong to the SLC1 family, whereas the transporters of the other neurotransmitters belong to the SLC6 family. An exciting and recent development is the emergence of the first high-resolution structures of archeal and bacterial members belonging to these two families. In this review the functional results on prototypes of the two families, the GABA transporter GAT-1 and the glutamate transporters GLT-1 and EAAC1, are described and discussed within the perspective provided by the novel structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Arriza J.L., Eliasof S., Kavanaugh M.P., Amara S.G. 1997. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl. Acad. Sci. USA 94:4155–4160

    Article  PubMed  CAS  Google Scholar 

  • Arriza J.L., Fairman W.A., Wadiche J.I., Murdoch G.H., Kavanaugh M.P., Amara S.G. 1994. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 14:5559–5569

    PubMed  CAS  Google Scholar 

  • Bendahan A., Armon A., Madani N., Kavanaugh M.P., Kanner B.I. 2000. Arginine 447 plays a pivotal role in substrate interactions in a neuronal glutamate transporter. J. Biol. Chem. 275:37436–37442

    Article  PubMed  CAS  Google Scholar 

  • Bennett E.R., Su H., Kanner B.I. 2000. Mutation of arginine 44 of GAT-1, a (Na(+) + Cl(−))-coupled gamma-aminobutyric acid transporter from rat brain, impairs net flux but not exchange. J. Biol. Chem. 275:34106–34113

    Article  PubMed  CAS  Google Scholar 

  • Billups B., Rossi D., Attwell D. 1996. Anion conductance behavior of the glutamate uptake carrier in salamander retinal glial cells. J. Neurosci. 16:6722–6731

    PubMed  CAS  Google Scholar 

  • Bismuth Y., Kavanaugh M.P., Kanner B.I. 1997. Tyrosine 140 of the gammaaminobutyric acid transporter GAT-1 plays a critical role in neurotransmitter recognition. J. Biol. Chem. 272:16096–16102

    Article  PubMed  CAS  Google Scholar 

  • Borre L., Kanner B.I. 2001. Coupled, but not uncoupled, fluxes in a neuronal glutamate transporter can be activated by lithium ions. J. Biol. Chem. 276:40396–40401

    Article  PubMed  CAS  Google Scholar 

  • Borre L., Kanner B.I. 2004. Arginine 445 controls the coupling between glutamate and cations in the neuronal transporter EAAC-1. J. Biol. Chem. 279:2513–2519

    Article  PubMed  CAS  Google Scholar 

  • Borre L., Kavanaugh M.P., Kanner B.I. 2002. Dynamic equilibrium between coupled and uncoupled modes of a neuronal glutamate transporter. J. Biol. Chem. 277:13501–13507

    Article  PubMed  CAS  Google Scholar 

  • Brew H., Attwell D. 1987. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. Nature 327:707–709

    Article  PubMed  CAS  Google Scholar 

  • Brocke L., Bendahan A., Grunewald M., Kanner B.I. 2002. Proximity of two oppositely oriented re-entrant loops in the glutamate transporter GLT-1 identified by paired cysteine mutagenesis. J. Biol. Chem. 277:3985–3992

    Article  PubMed  CAS  Google Scholar 

  • Chen J.G., Liu-Chen S., Rudnick G. 1998. Determination of external loop topology in the serotonin transporter by site-directed chemical labeling. J. Biol. Chem. 273:12675–12681

    Article  PubMed  CAS  Google Scholar 

  • Eliasof S., Jahr C.E. 1996. Retinal glial cell glutamate transporter is coupled to an anionic conductance. Proc. Natl. Acad. Sci. USA 93:4153–4158

    Article  PubMed  CAS  Google Scholar 

  • Fairman W.A., Vandenberg R.J., Arriza J.L., Kavanaugh M.P., Amara S.G. 1995. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603

    Article  PubMed  CAS  Google Scholar 

  • Giros B., Jaber M., Jones S.R., Wightman R.M., Caron M.G. 1996. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  PubMed  CAS  Google Scholar 

  • Golovanevsky V., Kanner B.I. 1999. The reactivity of the gamma-aminobutyric acid transporter GAT-1 toward sulfhydryl reagents is conformationally sensitive. Identification of a major target residue. J. Biol. Chem. 274:23020–23026

    Article  PubMed  CAS  Google Scholar 

  • Grewer C., Watzke N., Rauen T., Bicho A. 2003. Is the glutamate residue Glu-373 the proton acceptor of the excitatory amino acid carrier 1? J. Biol. Chem. 278:2585–92

    Article  PubMed  CAS  Google Scholar 

  • Grunewald M., Bendahan A., Kanner B.I. 1998. Biotinylation of single cysteine mutants of the glutamate transporter GLT-1 from rat brain reveals its unusual topology. Neuron. 21:623–632

    Article  PubMed  CAS  Google Scholar 

  • Grunewald M., Kanner B. 1995. Conformational changes monitored on the glutamate transporter GLT-1 indicate the existence of two neurotransmitter-bound states. J. Biol. Chem. 270:17017–17024

    Article  PubMed  CAS  Google Scholar 

  • Grunewald M., Kanner B.I. 2000. The accessibility of a novel re-entrant loop of the glutamate transporter GLT-1 is restricted by its substrate. J. Biol. Chem. 275:9684–9689

    Article  PubMed  CAS  Google Scholar 

  • Grunewald M., Menaker D., Kanner B.I. 2002. Cysteine-scanning mutagenesis reveals a conformationally sensitive re-entrant pore-loop in the glutamate transporter GLT-1. J. Biol. Chem. 277:26074–26080

    Article  PubMed  CAS  Google Scholar 

  • Guastella J., Nelson N., Nelson H., Czyzyk L., Keynan S., Miedel M.C., Davidson N., Lester H.A., Kanner B.I. 1990. Cloning and expression of a rat brain GABA transporter. Science 249:1303–1306

    Article  PubMed  CAS  Google Scholar 

  • Hilgemann D.W., Lu C.C. 1999. GAT1 (GABA:Na+:Cl−) cotransport function. Database reconstruction with an alternating access model. J. Gen. Physiol. 114:459–475

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y., Lee A., Chen J., Cadene M., Chait B.T., MacKinnon R. 2002. The open pore conformation of potassium channels. Nature 417:523–526

    Article  PubMed  CAS  Google Scholar 

  • Kanai Y., Hediger M.A. 1992. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471

    Article  PubMed  CAS  Google Scholar 

  • Kanner B.I. 1978. Active transport of gamma-aminobutyric acid by membrane vesicles isolated from rat brain. Biochemistry 17:1207–1211

    Article  PubMed  CAS  Google Scholar 

  • Kanner B.I. 1983. Bioenergetics of neurotransmitter transport. Biochim. Biophys. Acta. 726:293–316

    PubMed  CAS  Google Scholar 

  • Kanner B.I. 1989. Ion-coupled neurotransmitter transport. Curr. Opin. Cell Biol. 1:735–738

    Article  PubMed  CAS  Google Scholar 

  • Kanner B.I. 2003. Transmembrane domain I of the gamma-aminobutyric acid transporter GAT-1 plays a crucial role in the transition between cation leak and transport modes. J. Biol. Chem. 278:3705–3712

    Article  PubMed  CAS  Google Scholar 

  • Kanner B.I. 2005. Molecular physiology: intimate contact enables transport. Nature 437:203–205

    Article  PubMed  CAS  Google Scholar 

  • Kanner B.I., Bendahan A. 1982. Binding order of substrates to the sodium and potassium ion coupled L-glutamic acid transporter from rat brain. Biochemistry 21:6327–6330

    Article  PubMed  CAS  Google Scholar 

  • Kanner B.I., Borre L. 2002. The dual-function glutamate transporters: structure and molecular characterisation of the substrate-binding sites. Biochim. Biophys. Acta. 1555:92–95

    Article  PubMed  CAS  Google Scholar 

  • Kanner B.I., Marva E. 1982. Efflux of L-glutamate by synaptic plasma membrane vesicles isolated from rat brain. Biochemistry 21:3143–3147

    Article  PubMed  CAS  Google Scholar 

  • Kanner B.I., Schuldiner S. 1987. Mechanism of transport and storage of neurotransmitters. CRC Crit. Rev. Biochem. 22:1–38

    PubMed  CAS  Google Scholar 

  • Kanner B.I., Sharon I. 1978. Active transport of L-glutamate by membrane vesicles isolated from rat brain. Biochemistry 17:3949–3953

    Article  PubMed  CAS  Google Scholar 

  • Kavanaugh M.P., Arriza J.L., North R.A., Amara S.G. 1992. Electrogenic uptake of gamma-aminobutyric acid by a cloned transporter expressed in Xenopus oocytes. J. Biol. Chem. 267:22007–22009

    PubMed  CAS  Google Scholar 

  • Kavanaugh M.P., Bendahan A., Zerangue N., Zhang Y., Kanner B.I. 1997. Mutation of an amino acid residue influencing potassium coupling in the glutamate transporter GLT-1 induces obligate exchange. J. Biol. Chem. 272:1703–1708

    Article  PubMed  CAS  Google Scholar 

  • Keynan S., Kanner B.I. 1988. gamma-Aminobutyric acid transport in reconstituted preparations from rat brain: coupled sodium and chloride fluxes. Biochemistry 27:12–17

    Article  PubMed  CAS  Google Scholar 

  • Krause S., Schwarz W. 2005. Indentification and selective inhibition of the channel mode of the neuronal GABA transporter 1. Mol. Pharmacol. 68:1728–1735

    PubMed  CAS  Google Scholar 

  • Levy L.M., Warr O., Attwell D. 1998. Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J. Neurosci. 18:9620–9628

    PubMed  CAS  Google Scholar 

  • Loo D.D., Eskandari S., Boorer K.J., Sarkar H.K., Wright E.M. 2000. Role of Cl in electrogenic Na+-coupled cotransporters GAT1 and SGLT1. J. Biol. Chem. 275:37414–37422

    Article  PubMed  CAS  Google Scholar 

  • Lu C.C., Hilgemann D.W. 1999a. GAT1 (GABA:Na+:Cl) cotransport function. Kinetic studies in giant Xenopus oocyte membrane patches. J. Gen. Physiol. 114:445–457

    Article  CAS  Google Scholar 

  • Lu C.C., Hilgemann D.W. 1999b. GAT1 (GABA:Na+:Cl) cotransport function. Steady state studies in giant Xenopus oocyte membrane patches. J. Gen. Physiol. 114:429–444

    Article  CAS  Google Scholar 

  • Mabjeesh N.J., Kanner B.I. 1993. The substrates of a sodium- and chloride-coupled gamma-aminobutyric acid transporter protect multiple sites throughout the protein against proteolytic cleavage. Biochemistry 32:8540–8546

    Article  PubMed  CAS  Google Scholar 

  • MacAulay N., Bendahan A., Loland C.J., Zeuthen T., Kanner B.I., Gether U. 2001. Engineered Zn(2+) switches in the gamma-aminobutyric acid (GABA) transporter-1. Differential effects on GABA uptake and currents. J. Biol. Chem. 276:40476–40485

    Article  PubMed  CAS  Google Scholar 

  • MacAulay N., Zeuthen T., Gether U. 2002. Conformational basis for the Li(+) induced leak current in the rat gamma-aminobutyric acid (GABA) transporter J. Physiol. 544:447–458

    Article  PubMed  CAS  Google Scholar 

  • Mager S., Kleinberger-Doron N., Keshet G.I., Davidson N., Kanner B.I., Lester H.A. 1996. Ion binding and permeation at the GABA transporter GAT1. J. Neurosci. 16:5405–5414

    PubMed  CAS  Google Scholar 

  • Mager S., Min C., Henry D.J., Chavkin C., Hoffman B.J., Davidson N., Lester H.A. 1994. Conducting states of a mammalian serotonin transporter. Neuron 12:845–859

    Article  PubMed  CAS  Google Scholar 

  • Mager S., Naeve J., Quick M., Labarca C., Davidson N., Lester H.A. 1993. Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 10:177–188

    Article  PubMed  CAS  Google Scholar 

  • Melamed N., Kanner B.I. 2004. Transmembrane domains I and II of the gamma aminobutyric acid transporter GAT-4 contain molecular determinants of substrate specificity. Mol. Pharmacol. 65:1452–1461

    Article  PubMed  CAS  Google Scholar 

  • Menaker D., Bendahan A., Kanner B.I. 2006. The substrate specificity of a neuronal glutamate transporter is determined by the nature of the coupling ion. J. Neurochem. 99:20–28

    Article  PubMed  CAS  Google Scholar 

  • Nelson N. 1998. The family of Na+/Cl neurotransmitter transporters. J. Neurochem. 71:1785–1803

    Article  PubMed  CAS  Google Scholar 

  • Nelson P.J., Rudnick G. 1979. Coupling between platelet 5-hydroxytryptamine and potassium transport. J. Biol. Chem. 254:10084–10089

    PubMed  CAS  Google Scholar 

  • Ogawa H., Toyoshima C. 2002. Homology modeling of the cation binding sites of Na+K+-ATPase. Proc. Natl. Acad. Sci. USA 99:15977–15982

    Article  PubMed  CAS  Google Scholar 

  • Pantanowitz S., Bendahan A., Kanner B.I. 1993. Only one of the charged amino acids located in the transmembrane alpha-helices of the gamma-aminobutyric acid transporter (subtype A) is essential for its activity. J. Biol. Chem. 268:32225

    PubMed  CAS  Google Scholar 

  • Pines G., Danbolt N.C., Bjoras M., Zhang Y., Bendahan A., Eide L., Koepsell H., Storm-Mathisen J., Seeberg E., Kanner B.I. 1992. Cloning and expression of a rat brain L-glutamate transporter. Nature 360:464–467

    Article  PubMed  CAS  Google Scholar 

  • Pines G., Kanner B.I. 1990. Counterflow of L-glutamate in plasma membrane vesicles and reconstituted preparations from rat brain. Biochemistry 29:1120914

    Article  PubMed  Google Scholar 

  • Radian R., Bendahan A., Kanner B.I. 1986. Purification and identification of the functional sodium- and chloride-coupled gamma-aminobutyric acid transport glycoprotein from rat brain. J. Biol. Chem. 261:15437–15441

    PubMed  CAS  Google Scholar 

  • Rosental N., Bendahan A., Kanner B.I. 2006. Multiple consequences of mutating two conserved Beta-bridge forming residues in the translocation cycle of a neuronal glutamate transporter. J. Biol. Chem. 281:27905–27918

    Article  PubMed  CAS  Google Scholar 

  • Ryan R.M., Mitrovic A.D., Vandenberg R.J. 2004. The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway. J. Biol. Chem. 279:20742–20751

    Article  PubMed  CAS  Google Scholar 

  • Ryan R.M., Vandenberg R.J. 2002. Distinct conformational states mediate the transport and anion channel properties of the glutamate transporter EAAT-1. J. Biol. Chem. 277:13494–13500

    Article  PubMed  CAS  Google Scholar 

  • Seal R.P., Shigeri Y., Eliasof S., Leighton B.H., Amara S.G. 2001. Sulfhydryl modification of V449C in the glutamate transporter EAAT1 abolishes substrate transport but not the substrate-gated anion conductance. Proc. Natl. Acad. Sci. USA 98:15324–15329

    Article  PubMed  CAS  Google Scholar 

  • Shachnai L., Shimamoto K., Kanner B.I. 2005. Sulfhydryl modification of cysteine mutants of a neuronal glutamate transporter reveals an inverse relationship between sodium dependent conformational changes and the glutamate-gated anion conductance. Neuropharmacology 49:862–871

    Article  PubMed  CAS  Google Scholar 

  • Slotboom D.J., Sobczak I., Konings W.N., Lolkema J.S. 1999. A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive re-entrant loop. Proc. Natl. Acad. Sci. USA 96:14282–14287

    Article  PubMed  CAS  Google Scholar 

  • Storck T., Schulte S., Hofmann K., Stoffel W. 1992. Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc. Natl. Acad. Sci. USA 89:10955–10959

    Article  PubMed  CAS  Google Scholar 

  • Szatkowski M., Barbour B., Attwell D. 1990. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K., Watase K., Manabe T., Yamada K., Watanabe M., Takahashi K., Iwama H., Nishikawa T., Ichihara N., Kikuchi T., Okuyama S., Kawashima N., Hori S., Takimoto M., Wada K. 1997. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–16702

    Article  PubMed  CAS  Google Scholar 

  • Tao Z., Zhang Z., Grewer C. 2006. Neutralization of the aspartic acid residue Asp 367, but not Asp-454, inhibits binding of Na+ to the glutamate-free form and cycling of the glutamate transporter EAAC1. J. Biol. Chem. 281:10263–10272

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C., Nakasako M., Nomura H., Ogawa H. 2000. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405:647–655

    Article  PubMed  CAS  Google Scholar 

  • Wadiche J.I., Amara S.G., Kavanaugh M.P. 1995a. Ion fluxes associated with excitatory amino acid transport. Neuron 15:721–728

    Article  CAS  Google Scholar 

  • Wadiche J.I., Arriza J.L., Amara S.G., Kavanaugh M.P. 1995b. Kinetics of a human glutamate transporter. Neuron 14:1019–1027

    Article  CAS  Google Scholar 

  • Weinglass A.B., Smirnova I.N., Kaback H.R. 2001. Engineering conformational flexibility in the lactose permease of Escherichia coli: use of glycine-scanning mutagenesis to rescue mutant Glu325 → Asp. Biochemistry 40:769–776

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A., Singh S.K., Kawate T., Jin Y., Gouaux E. 2005. Crystal structure of a bacterial homologue of Na+/Cldependent neurotransmitter transporters. Nature 437:215–223

    Article  PubMed  CAS  Google Scholar 

  • Yernool D., Boudker O., Jin Y., Gouaux E. 2004. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    Article  PubMed  CAS  Google Scholar 

  • Zarbiv R., Grunewald M., Kavanaugh M.P., Kanner B.I. 1998. Cysteine scanning of the surroundings of an alkali-ion binding site of the glutamate transporter GLT-1 reveals a conformationally sensitive residue. J. Biol. Chem. 273:14231–14237

    Article  PubMed  CAS  Google Scholar 

  • Zerangue N., Kavanaugh M.P. 1996. Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Bendahan A., Zarbiv R., Kavanaugh M.P., Kanner B.I. 1998. Molecular determinant of ion selectivity of a (Na+ + K+)-coupled rat brain glutamate transporter. Proc. Natl. Acad. Sci. USA 95:751–755

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Kanner B.I. 1999. Two serine residues of the glutamate transporter GLT-1 are crucial for coupling the fluxes of sodium and the neurotransmitter. Proc. Natl. Acad. Sci. USA 96:1710–1715

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y., Bennett E.R., Kanner B.I. 2004. The aqueous accessibility in the external half of transmembrane domain I of the GABA transporter GAT-1 is modulated by its ligands. J. Biol. Chem. 279:13800–13808

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y., Kanner B.I. 2005. Transporter-associated currents in the gamma aminobutyric acid transporter GAT-1 are conditionally impaired by mutations of a conserved glycine residue. J. Biol. Chem. 280:20316–20324

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y., Zomot E., Kanner B.I. 2006. Identification of a lithium interaction site in the GABA transporter GAT-1. J. Biol. Chem. 281:22092–22099

    Article  PubMed  CAS  Google Scholar 

  • Zomot E., Kanner B.I. 2003. The interaction of the gamma-aminobutyric acid transporter GAT-1 with the neurotransmitter is selectively impaired by sulfhydryl modification of a conformationally sensitive cysteine residue engineered into extracellular loop IV. J. Biol. Chem. 278:42950–42958

    Article  PubMed  CAS  Google Scholar 

  • Zomot E., Zhou Y., Kanner B.I. 2005. Proximity of transmembrane domains 1 and 3 of the gamma-aminobutyric acid transporter GAT-1 inferred from paired cysteine mutagenesis. J. Biol. Chem. 280:25512–25516

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baruch I. Kanner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanner, B.I. Structure and Function of Sodium-coupled GABA and Glutamate Transporters. J Membrane Biol 213, 89–100 (2006). https://doi.org/10.1007/s00232-006-0877-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0877-5

Keywords

Navigation