Skip to main content

Advertisement

Log in

Connexins and Gap Junctions in Mammary Gland Development and Breast Cancer Progression

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The development and function of the mammary gland require precise control of gap junctional intercellular communication (GJIC). Here, we review the expression and function of gap junction proteins, connexins, in the normal mouse and human mammary gland. We then discuss the possible tumor-suppressive role of Cx26 and Cx43 in primary breast tumors and through the various stages of breast cancer metastasis and consider whether connexins or GJIC may actually promote tumorigenesis at some stages. Finally, we present in vitro data on the impact of connexin expression on breast cancer cell metastasis to the bone. We observed that Cx43 expression inhibited the invasive and migratory potentials of MDA-MB-231 breast cancer cells in a bone microenvironment, provided by the MC3T3-E1 mouse osteoblastic cell line. Expression of either Cx26 or Cx43 had no effect on MDA-MB-231 growth and adhesion under the influence of osteoblasts and did not result in regulation of osteogenic gene expression in these breast cancer cells. Furthermore, connexin-expressing MDA-MB-231 cells did not have an effect on the growth or differentiation of MC3T3-E1 cells. In summary, we conclude that connexin expression and GJIC are integral to the development and differentiation of the mammary gland. In breast cancer, connexins generally act as tumor suppressors in the primary tumor; however, in advanced breast tumors, connexins appear to act as both context-dependent tumor suppressors and facilitators of disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrams CK, Oh S, Ri Y, Bargiello TA (2000) Mutations in connexin 32: the molecular and biophysical bases for the X-linked form of Charcot-Marie-Tooth disease. Brain Res Brain Res Rev 32:203–214

    Article  PubMed  CAS  Google Scholar 

  • Altevogt BM, Paul DL (2004) Four classes of intercellular channels between glial cells in the CNS. J Neurosci 24:4313–4323

    Article  PubMed  CAS  Google Scholar 

  • Bellahcene A, Bachelier R, Detry C, Lidereau R, Clezardin P, Castronovo V (2007) Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Res Treat 101:135–148

    Article  PubMed  CAS  Google Scholar 

  • Bevans CG, Kordel M, Rhee SK, Harris AL (1998) Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem 273:2808–2816

    Article  PubMed  CAS  Google Scholar 

  • Bry C, Maass K, Miyoshi K, Willecke K, Ott T, Robinson GW, Hennighausen L (2004) Loss of connexin 26 in mammary epithelium during early but not during late pregnancy results in unscheduled apoptosis and impaired development. Dev Biol 267:418–429

    Article  PubMed  CAS  Google Scholar 

  • Cai J, Jiang WG, Mansel RE (1998) Gap junctional communication and the tyrosine phosphorylation of connexin 43 in interaction between breast cancer and endothelial cells. Int J Mol Med 1:273–278

    PubMed  CAS  Google Scholar 

  • Cairns RA, Khokha R, Hill RP (2003) Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med 3:659–671

    Article  PubMed  CAS  Google Scholar 

  • Cao F, Eckert R, Elfgang C, Nitsche JM, Snyder SA, Hu DF, Willecke K, Nicholson BJ (1998) A quantitative analysis of connexin-specific permeability differences of gap junctions expressed in HeLa transfectants and Xenopus oocytes. J Cell Sci 111(pt 1):31–43

    PubMed  CAS  Google Scholar 

  • Coleman RE (1997) Skeletal complications of malignancy. Cancer 80:1588–1594

    Article  PubMed  CAS  Google Scholar 

  • Conklin CM, Bechberger JF, MacFabe D, Guthrie N, Kurowska EM, Naus CC (2007) Genistein and quercetin increase connexin43 and suppress growth of breast cancer cells. Carcinogenesis 28:93–100

    Article  PubMed  CAS  Google Scholar 

  • El-Sabban ME, Sfeir AJ, Daher MH, Kalaany NY, Bassam RA, Talhouk RS (2003) ECM-induced gap junctional communication enhances mammary epithelial cell differentiation. J Cell Sci 116:3531–3541

    Article  PubMed  CAS  Google Scholar 

  • Giunciuglio D, Cai T, Filanti C, Manduca P, Albini A (1995) Effect of osteoblast supernatants on cancer cell migration and invasion. Cancer Lett 97:69–74

    Article  PubMed  CAS  Google Scholar 

  • Goldberg GS, Moreno AP, Lampe PD (2002) Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP. J Biol Chem 277:36725–36730

    Article  PubMed  CAS  Google Scholar 

  • Goren D, Grob M, Lorenzoni P, Burger MM (1997) Human bone cells stimulate the growth of human breast carcinoma cells. Tumour Biol 18:341–349

    Article  PubMed  CAS  Google Scholar 

  • Gould VE, Mosquera JM, Leykauf K, Gattuso P, Durst M, Alonso A (2005) The phosphorylated form of connexin43 is up-regulated in breast hyperplasias and carcinomas and in their neoformed capillaries. Hum Pathol 36:536–545

    Article  PubMed  CAS  Google Scholar 

  • Grummer R, Chwalisz K, Mulholland J, Traub O, Winterhager E (1994) Regulation of connexin26 and connexin43 expression in rat endometrium by ovarian steroid hormones. Biol Reprod 51:1109–1116

    Article  PubMed  CAS  Google Scholar 

  • Grummer R, Hewitt SW, Traub O, Korach KS, Winterhager E (2004) Different regulatory pathways of endometrial connexin expression: preimplantation hormonal-mediated pathway versus embryo implantation-initiated pathway. Biol Reprod 71:273–281

    Article  PubMed  CAS  Google Scholar 

  • Grummer R, Traub O, Winterhager E (1999) Gap junction connexin genes cx26 and cx43 are differentially regulated by ovarian steroid hormones in rat endometrium. Endocrinology 140:2509–2516

    Article  PubMed  CAS  Google Scholar 

  • Guise TA, Kozlow WM, Heras-Herzig A, Padalecki SS, Yin JJ, Chirgwin JM (2005) Molecular mechanisms of breast cancer metastases to bone. Clin Breast Cancer 5(Suppl):S46–S53

    PubMed  CAS  Google Scholar 

  • Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472

    PubMed  CAS  Google Scholar 

  • Hendrix EM, Mao SJ, Everson W, Larsen WJ (1992) Myometrial connexin 43 trafficking and gap junction assembly at term and in preterm labor. Mol Reprod Dev 33:27–38

    Article  PubMed  CAS  Google Scholar 

  • Hirschi KK, Xu CE, Tsukamoto T, Sager R (1996) Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Differ 7:861–870

    PubMed  CAS  Google Scholar 

  • Jamieson S, Going JJ, D’Arcy R, George WD (1998). Expression of gap junction proteins connexin 26 and connexin 43 in normal human breast and in breast tumours. J Pathol 184:37–43

    Article  PubMed  CAS  Google Scholar 

  • Kalra J, Shao Q, Qin H, Thomas T, Alaoui-Jamali MA, Laird DW (2006) Cx26 inhibits breast MDA-MB-435 cell tumorigenic properties by a gap junctional intercellular communication-independent mechanism. Carcinogenesis 27:2528–2537

    Article  PubMed  CAS  Google Scholar 

  • Kanczuga-Koda L, Sulkowska M, Koda M, Reszec J, Famulski W, Baltaziak M, Sulkowski S (2003) Expression of connexin 43 in breast cancer in comparison with mammary dysplasia and the normal mammary gland. Folia Morphol (Warsz) 62:439–442

    Google Scholar 

  • Kanczuga-Koda L, Sulkowski S, Lenczewski A, Koda M, Wincewicz A, Baltaziak M, Sulkowska M (2006) Increased expression of connexins 26 and 43 in lymph node metastases of breast cancer. J Clin Pathol 59:429–433

    Article  PubMed  CAS  Google Scholar 

  • Kanczuga-Koda L, Sulkowski S, Tomaszewski J, Koda M, Sulkowska M, Przystupa W, Golaszewska J, Baltaziak M (2005) Connexins 26 and 43 correlate with Bak, but not with Bcl-2 protein in breast cancer. Oncol Rep 14:325–329

    PubMed  CAS  Google Scholar 

  • Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83

    Article  PubMed  CAS  Google Scholar 

  • Komori T (2002) Runx2, a multifunctional transcription factor in skeletal development. J Cell Biochem 87:1–8

    Article  PubMed  CAS  Google Scholar 

  • Laird DW, Fistouris P, Batist G, Alpert L, Huynh HT, Carystinos GD, Alaoui-Jamali MA (1999) Deficiency of connexin43 gap junctions is an independent marker for breast tumors. Cancer Res 59:4104–4110

    PubMed  CAS  Google Scholar 

  • Lambe T, Finlay D, Murphy M, Martin F (2006) Differential expression of connexin 43 in mouse mammary cells. Cell Biol Int 30:472–479

    Article  PubMed  CAS  Google Scholar 

  • Lamote I, Meyer E, Massart-Leen AM, Burvenich C (2004) Sex steroids and growth factors in the regulation of mammary gland proliferation, differentiation, and involution. Steroids 69:145–159

    Article  PubMed  CAS  Google Scholar 

  • Lampe PD, Lau AF (2004) The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 36:1171–1186

    Article  PubMed  CAS  Google Scholar 

  • Lee SW, Tomasetto C, Paul D, Keyomarsi K, Sager R (1992) Transcriptional downregulation of gap-junction proteins blocks junctional communication in human mammary tumor cell lines. J Cell Biol 118:1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Lee SW, Tomasetto C, Sager R (1991) Positive selection of candidate tumor-suppressor genes by subtractive hybridization. Proc Natl Acad Sci USA 88:2825–2829

    Article  PubMed  CAS  Google Scholar 

  • Locke D, Jamieson S, Stein T, Liu J, Hodgins MB, Harris AL, Gusterson B (2006) Nature of Cx30-containing channels in the adult mouse mammary gland. Cell Tissue Res 328:97–107

    Article  PubMed  CAS  Google Scholar 

  • Locke D, Perusinghe N, Newman T, Jayatilake H, Evans WH, Monaghan P (2000) Developmental expression and assembly of connexins into homomeric and heteromeric gap junction hemichannels in the mouse mammary gland. J Cell Physiol 183:228–237

    Article  PubMed  CAS  Google Scholar 

  • Locke D, Stein T, Davies C, Morris J, Harris AL, Evans WH, Monaghan P, Gusterson B (2004) Altered permeability and modulatory character of connexin channels during mammary gland development. Exp Cell Res 298:643–660

    Article  PubMed  CAS  Google Scholar 

  • Ma M, Dahl G (2006) Cosegregation of permeability and single-channel conductance in chimeric connexins. Biophys J 90:151–163

    Article  PubMed  CAS  Google Scholar 

  • McLachlan E, Manias JL, Gong XQ, Lounsbury CS, Shao Q, Bernier SM, Bai D, Laird DW (2005) Functional characterization of oculodentodigital dysplasia-associated Cx43 mutants. Cell Commun Adhes 12:279–292

    Article  PubMed  CAS  Google Scholar 

  • McLachlan E, Shao Q, Wang HL, Langlois S, Laird DW (2006) Connexins act as tumor suppressors in three-dimensional mammary cell organoids by regulating differentiation and angiogenesis. Cancer Res 66:9886–9894

    Article  PubMed  CAS  Google Scholar 

  • Mercer RR, Mastro AM (2005) Cytokines secreted by bone-metastatic breast cancer cells alter the expression pattern of f-actin and reduce focal adhesion plaques in osteoblasts through PI3K. Exp Cell Res 310:270–281

    Article  PubMed  CAS  Google Scholar 

  • Mercer RR, Miyasaka C, Mastro AM (2004) Metastatic breast cancer cells suppress osteoblast adhesion and differentiation. Clin Exp Metastasis 21:427–435

    Article  PubMed  CAS  Google Scholar 

  • Moharita AL, Taborga M, Corcoran KE, Bryan M, Patel PS, Rameshwar P (2006) SDF-1alpha regulation in breast cancer cells contacting bone marrow stroma is critical for normal hematopoiesis. Blood 108:3245–3252

    Article  PubMed  CAS  Google Scholar 

  • Momiyama M, Omori Y, Ishizaki Y, Nishikawa Y, Tokairin T, Ogawa J, Enomoto K (2003) Connexin26-mediated gap junctional communication reverses the malignant phenotype of MCF-7 breast cancer cells. Cancer Sci 94:501–507

    Article  PubMed  CAS  Google Scholar 

  • Monaghan P, Clarke C, Perusinghe NP, Moss DW, Chen XY, Evans WH (1996) Gap junction distribution and connexin expression in human breast. Exp Cell Res 223:29–38

    Article  PubMed  CAS  Google Scholar 

  • Monaghan P, Moss D (1996) Connexin expression and gap junctions in the mammary gland. Cell Biol Int 20:121–125

    Article  PubMed  CAS  Google Scholar 

  • Monaghan P, Perusinghe N, Carlile G, Evans WH (1994) Rapid modulation of gap junction expression in mouse mammary gland during pregnancy, lactation, and involution. J Histochem Cytochem 42:931–938

    PubMed  CAS  Google Scholar 

  • Naoi Y, Miyoshi Y, Taguchi T, Kim SJ, Arai T, Tamaki Y, Noguchi S (2007) Connexin26 expression is associated with lymphatic vessel invasion and poor prognosis in human breast cancer. Breast Cancer Res Treat (in press)

  • Panchin YV (2005) Evolution of gap junction proteins – the pannexin alternative. J Exp Biol 208:1415–1419

    Article  PubMed  CAS  Google Scholar 

  • Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72:408–418

    Article  PubMed  CAS  Google Scholar 

  • Plum A, Hallas G, Magin T, Dombrowski F, Hagendorff A, Schumacher B, Wolpert C, Kim J, Lamers WH, Evert M, Meda P, Traub O, Willecke K (2000) Unique and shared functions of different connexins in mice. Curr Biol 10:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Pollmann MA, Shao Q, Laird DW, Sandig M (2005) Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture. Breast Cancer Res 7:R522–R534

    Article  PubMed  CAS  Google Scholar 

  • Pozzi A, Risek B, Kiang DT, Gilula NB, Kumar NM (1995) Analysis of multiple gap junction gene products in the rodent and human mammary gland. Exp Cell Res 220:212–219

    Article  PubMed  CAS  Google Scholar 

  • Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL, Stein GS (2006) Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev 25:589–600

    Article  PubMed  CAS  Google Scholar 

  • Qin H, Shao Q, Curtis H, Galipeau J, Belliveau DJ, Wang T, Alaoui-Jamali MA, Laird DW (2002) Retroviral delivery of connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap junctional intercellular communication. J Biol Chem 277:29132–29138

    Article  PubMed  CAS  Google Scholar 

  • Qin H, Shao Q, Thomas T, Kalra J, Alaoui-Jamali MA, Laird DW (2003) Connexin26 regulates the expression of angiogenesis-related genes in human breast tumor cells by both GJIC-dependent and -independent mechanisms. Cell Commun Adhes 10:387–393

    Article  PubMed  CAS  Google Scholar 

  • Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834

    Article  PubMed  CAS  Google Scholar 

  • Robinson GW, Karpf AB, Kratochwil K (1999) Regulation of mammary gland development by tissue interaction. J Mammary Gland Biol Neoplasia 4:9–19

    Article  PubMed  CAS  Google Scholar 

  • Roscoe W, Veitch GI, Gong XQ, Pellegrino E, Bai D, McLachlan E, Shao Q, Kidder GM, Laird DW (2005) Oculodentodigital dysplasia-causing connexin43 mutants are non-functional and exhibit dominant effects on wild-type connexin43. J Biol Chem 280:11458–11466

    Article  PubMed  CAS  Google Scholar 

  • Rose AA, Siegel PM (2006) Breast cancer-derived factors facilitate osteolytic bone metastasis. Bull Cancer 93:931–943

    PubMed  CAS  Google Scholar 

  • Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83:1359–1400

    PubMed  CAS  Google Scholar 

  • Saunders MM, Seraj MJ, Li Z, Zhou Z, Winter CR, Welch DR, Donahue HJ (2001) Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res 61:1765–1767

    PubMed  CAS  Google Scholar 

  • Schroeder TM, Jensen ED, Westendorf JJ (2005) Runx2: a master organizer of gene transcription in developing and maturing osteoblasts. Birth Defects Res C Embryo Today 75:213–225

    Article  PubMed  CAS  Google Scholar 

  • Shao Q, Wang H, McLachlan E, Veitch GI, Laird DW (2005) Down-regulation of Cx43 by retroviral delivery of small interfering RNA promotes an aggressive breast cancer cell phenotype. Cancer Res 65:2705–2711

    Article  PubMed  CAS  Google Scholar 

  • Shibayama J, Paznekas W, Seki A, Taffet S, Jabs EW, Delmar M, Musa H (2005) Functional characterization of connexin43 mutations found in patients with oculodentodigital dysplasia. Circ Res 96:e83–e91

    Article  PubMed  CAS  Google Scholar 

  • Singal R, Tu ZJ, Vanwert JM, Ginder GD, Kiang DT (2000) Modulation of the connexin26 tumor suppressor gene expression through methylation in human mammary epithelial cell lines. Anticancer Res 20:59–64

    PubMed  CAS  Google Scholar 

  • Talhouk RS, Elble RC, Bassam R, Daher M, Sfeir A, Mosleh LA, El-Khoury H, Hamoui S, Pauli BU, El-Sabban ME (2005) Developmental expression patterns and regulation of connexins in the mouse mammary gland: expression of connexin30 in lactogenesis. Cell Tissue Res 319:49–59

    Article  PubMed  CAS  Google Scholar 

  • Tan LW, Bianco T, Dobrovic A (2002) Variable promoter region CpG island methylation of the putative tumor suppressor gene connexin 26 in breast cancer. Carcinogenesis 23:231–236

    Article  PubMed  CAS  Google Scholar 

  • Tomasetto C, Neveu MJ, Daley J, Horan PK, Sager R (1993) Specificity of gap junction communication among human mammary cells and connexin transfectants in culture. J Cell Biol 122:157–167

    Article  PubMed  CAS  Google Scholar 

  • Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, Tulchinsky E, Van Roy F, Berx G (2005) SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 33:6566–6578

    Article  PubMed  CAS  Google Scholar 

  • Weber PA, Chang HC, Spaeth KE, Nitsche JM, Nicholson BJ (2004) The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities. Biophys J 87:958–973

    Article  PubMed  CAS  Google Scholar 

  • Wilgenbus KK, Kirkpatrick CJ, Knuechel R, Willecke K, Traub O (1992) Expression of Cx26, Cx32 and Cx43 gap junction proteins in normal and neoplastic human tissues. Int J Cancer 51:522–529

    Article  PubMed  CAS  Google Scholar 

  • Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka I, Kuraoka A, Inai T, Ishibashi T, Shibata Y (1997) Changes in the phosphorylation states of connexin43 in myoepithelial cells of lactating rat mammary glands. Eur J Cell Biol 72:166–173

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Isabelle Plant for providing the image for Figure 2 and Crystal Lounsbury for generating the artwork presented in Figures 1 and 4. This study was funded by the Canadian Institutes of Health Research and the Canadian Breast Cancer Research Alliance. E. M. holds a Terry Fox Foundation Studentship through the National Cancer Institute of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale W. Laird.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLachlan, E., Shao, Q. & Laird, D.W. Connexins and Gap Junctions in Mammary Gland Development and Breast Cancer Progression. J Membrane Biol 218, 107–121 (2007). https://doi.org/10.1007/s00232-007-9052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9052-x

Keywords

Navigation