Skip to main content
Log in

Membrane Potential Hyperpolarization in Mammalian Cardiac Cells by Synchronization Modulation of Na/K Pumps

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

In previously reported work, we developed a new technique, synchronization modulation, to electrically activate Na/K pump molecules. The fundamental mechanism involved in this technique is a dynamic entrainment procedure of the pump molecules, carried out in a stepwise pattern. The entrainment procedure consists of two steps: synchronization and modulation. We theoretically predicted that the pump functions can be activated exponentially as a function of the membrane potential. We have experimentally demonstrated synchronization of the Na/K pump molecules and acceleration of their pumping rates by many fold through use of voltage-clamp techniques, directly monitoring the pump currents. We further applied this technique to intact skeletal muscle fibers from amphibians and found significant effects on the membrane resting potential. Here, we extend our study to intact mammalian cardiomyocytes. We employed a noninvasive confocal microscopic fluorescent imaging technique to monitor electric field–induced changes in ionic concentration gradient and membrane resting potential. Our results further confirm that the well-designed synchronization modulation electric field can effectively accelerate the Na/K pumping rate, increasing the ionic concentration gradient across the cell membrane and hyperpolarizing the membrane resting potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Apell HJ (2003) Toward an understanding of ion transport through the Na, K-ATPase. Ann N Y Acad Sci 986:133

    PubMed  CAS  Google Scholar 

  • Astumian RD (1997) Thermodynamics and kinetics of a brownian motor. Science 276:917

    Article  PubMed  CAS  Google Scholar 

  • Astumian RD (2003) Adiabatic pumping mechanism for ion motive ATPases. Phys Rev Lett 91:118–124

    Article  CAS  Google Scholar 

  • Bertorello AM, Ridge KM, Chibalin AV, Katz AI, Sznajder JI (1999) Isoproterenol increases Na/K ATPase activity by membrane insertion of α-subunits in lung alveolar cells. Am J Physiol 276:L20–L27

    PubMed  CAS  Google Scholar 

  • Blank M, Soo L (1989) The effects of alternating current on Na,K ATPase function. Bioelectrochem Bioenerg 22:313–322

    Article  CAS  Google Scholar 

  • Blank M, Soo L (1996) The threshold for Na,K-ATPase stimulation by electromagnetic field. Bioelectrochem Bioenerg 40:63–65

    Article  CAS  Google Scholar 

  • Blank M, Soo L (2001) Optimal frequencies in magnetic field acceleration of cytochromic oxidase and Na/K-ATPase reaction. Bioelectrochemistry 53:171–174

    Article  PubMed  CAS  Google Scholar 

  • Blank M, Soo L (2005) A proposed explanation for effects of electric and magnetic fields on the Na,K-ATPase in terms of interaction with electron. Bioelectromagnetics 26:591–597

    Article  CAS  Google Scholar 

  • Buchanan R, Nielsen OB, Clausen T (2002) Excitation- and β2-agonist-induced activation of the Na/K pump in rat soleus muscle. J Physiol (Lond) 545:229–240

    Article  CAS  Google Scholar 

  • Chen W, Wu WH (2002) The asymmetric, rectifier-like I-V curve of the Na/K pump transient currents in frog skeletal muscle fibers. Bioelectrochemistry 56:199–203

    Article  PubMed  CAS  Google Scholar 

  • Chen W (2006) Voltage-dependence of carrier-mediated ion transporters. Phys Rev E 73(Pt 1):021902-1-7

    Google Scholar 

  • Chen W, Zhang ZS (2006) Synchronization of the Na/K pump by a train of pulses. J Bioenerget Biomembr 38:319–325

    Google Scholar 

  • Chen W, Zhang ZS, Huang R (2007) Entrainment of Na/K pumps by a synchronization modulation electric field. J Bioenerget Biomembr 39:331–339

    Google Scholar 

  • Chen W, Dando R (2007) Synchronization modulation of Na/K pump molecules can hyperpolarize the membrane resting potential in intact fibers. J Bioenerget Biomembr 39:117–126

    Google Scholar 

  • Chen W, Dando R (2006) Electrical activation of Na/K pumps can increase ionic concentration gradient and membrane resting potential. J Membr Biol 214:147–155

    Google Scholar 

  • Clausen T (1998) Clinical and therapeutic significance of the Na,K pump. Clin Sci 95:3–17

    Article  PubMed  CAS  Google Scholar 

  • Clausen T (2003) Na/K pump regulation and skeletal muscle contractility. Physiol Rev 83:1269–1324

    PubMed  CAS  Google Scholar 

  • Clausen T, Nielsen OB (1998) Rapid activation of the Na/K pump: mechanisms and functional significance. Bio Skr Dan Vid Selsk 49:153–158

    CAS  Google Scholar 

  • De Weer P, Gadsby DC, Rakowski RF (1988) Voltage dependence of the Na-K pump. Annu Rev Physiol 50:225–241

    Article  PubMed  CAS  Google Scholar 

  • Gross D, Loew LM (1989) Fluorescent indicators of membrane potential: microfluorometry and imaging. Methods Cell Biol 30:193–218

    PubMed  CAS  Google Scholar 

  • Kaminski PM, Wolin MS (1994) Hypoxia increases superoxide anion production from bovine coronary microvessels, but not cardiac myocytes, via increased xanthine oxides. Microcirculation 4:231–236

    Google Scholar 

  • Loew LM (1993) Confocal microscopy of potentiometric fluorescent dyes. Methods Cell Biol 38:195–209

    PubMed  CAS  Google Scholar 

  • Markin VS, Liu DS, Rosenberg MD, Tsong TY (1992) Resonance transduction of low level periodic signals by an enzyme: an oscillatory activation barrier model. Biophys J 61:1045–1049

    PubMed  CAS  Google Scholar 

  • Nakao M, Gadsby DC (1989) [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes. J Gen Physiol 94:539–565

    Article  PubMed  CAS  Google Scholar 

  • Pedemonte CH (1988) Kinetic mechanism of inhibition of the Na-pump and some of its partial reactions by external Na(Nao). J Theor Biol 134:165–182

    Article  PubMed  CAS  Google Scholar 

  • Pesce L, Carmen G, Comellas A, Ridge KM (2000) Beta-agonists regulate Na,K-ATPases via novel MARK/ERK and rapamycin-sensitive pathways. FEBS Lett 486:310–314

    Article  PubMed  CAS  Google Scholar 

  • Rakowski RF, Gadsby DC, DeWeer P (1997) Voltage dependence of the Na/K pump. J Membr Biol 155:105–122

    Article  PubMed  CAS  Google Scholar 

  • Rose AM, Valdes R Jr (1994) Understanding the sodium pump and its relevance to disease. Clin Chem 40:1674–1685

    PubMed  CAS  Google Scholar 

  • Sims PJ, Waggoner AS, Wang CH, Hoffman JF (1974) Studies on the mechanism by which cyanine dye measure membrane potential in red flood cells and phosphatidylcholine vesicles. Biochemistry 13:3315–3330

    Article  PubMed  CAS  Google Scholar 

  • Teissie J, Tsong TY (1980) Evidence of voltage-induced channel opening in Na/K ATPase of human erythrocyte membrane. J Membr Biol 55:133–140

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY, Ernse LA, Waggoner AS (1990) Fluorophores for confocal microscopy: photophysics and photochemistry. In: Pawley J (ed) Handbook of confocal microscopy, Plenum Press, New York, pp 169–178

  • Tsong TY (2002) Na,K-ATPase as a brownian motor: electric field-induceconformational fluctuation leads to uphill pumping of cation in the absence of ATP. J Biol Physics 2:309–325

    Article  Google Scholar 

  • Waggoner AS (1979) Dye indicators of membrane potential. Annu Rev Biophys Bioeng 8:847–868

    Article  Google Scholar 

Download references

Acknowledgement

This study was partially supported by research grants from the National Institutes of Health (NIGB 2R01 50785 and NSF PHY0515787).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Dando, R. Membrane Potential Hyperpolarization in Mammalian Cardiac Cells by Synchronization Modulation of Na/K Pumps. J Membrane Biol 221, 165–173 (2008). https://doi.org/10.1007/s00232-008-9094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-008-9094-8

Keywords

Navigation