Skip to main content
Log in

Antimicrobial Peptides: Successes, Challenges and Unanswered Questions

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Multidrug antibiotic resistance is an increasingly serious public health problem worldwide. Thus, there is a significant and urgent need for the development of new classes of antibiotics that do not induce resistance. To develop such antimicrobial compounds, we must look toward agents with novel mechanisms of action. Membrane-permeabilizing antimicrobial peptides (AMPs) are good candidates because they act without high specificity toward a protein target, which reduces the likelihood of induced resistance. Understanding the mechanism of membrane permeabilization is crucial for the development of AMPs into useful antimicrobial agents. Various models, some phenomenological and others more quantitative or semimolecular, have been proposed to explain the action of AMPs. While these models explain many aspects of AMP action, none of the models captures all of the experimental observations, and significant questions remain unanswered. Here, we discuss the state of the field and pose some questions that, if answered, could speed the discovery of clinically useful peptide antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Almeida PF, Pokorny A (2009) Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: from kinetics to thermodynamics. Biochemistry 48:8083–8093

    Article  CAS  PubMed  Google Scholar 

  • Arias CA, Murray BE (2009) Antibiotic-resistant bugs in the 21st century—a clinical super-challenge. N Engl J Med 360:439–443

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B (2009) Rationalizing the membrane interactions of cationic amphipathic antimicrobial peptides by their molecular shape. Curr Opin Colloid Interface Sci 14:349–355

    Article  CAS  Google Scholar 

  • Bechinger B, Lohner K (2006) Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta 1758:1529–1539

    Article  CAS  PubMed  Google Scholar 

  • Brahmachary M et al (2004) ANTIMIC: a database of antimicrobial sequences. Nucleic Acids Res 32(database issue D586-9):D586–D589

    Article  CAS  PubMed  Google Scholar 

  • Cudic M, Otvos L Jr (2002) Intracellular targets of antibacterial peptides. Curr Drug Targets 3:101–106

    Article  CAS  PubMed  Google Scholar 

  • Demegen Pharmaceuticals (2010) Pharmaceutical products. Product profiles. Novel candidiasis therapy. www.demegen.com/pharma/candidiasis.htm

  • Easton DM et al (2009) Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol 27:582–590

    Article  CAS  PubMed  Google Scholar 

  • Epand RM, Epand RF (2009) Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim Biophys Acta 1788:289–294

    Article  CAS  PubMed  Google Scholar 

  • Epand RF et al (2010) Probing the “charge cluster mechanism” in amphipathic helical cationic antimicrobial peptides. Biochemistry 49:4076–4084

    Article  CAS  PubMed  Google Scholar 

  • Fjell CD, Hancock RE, Cherkasov A (2007) AMPer: a database and an automated discovery tool for antimicrobial peptides. Bioinformatics 23:1148–1155

    Article  CAS  PubMed  Google Scholar 

  • Gardy JL et al (2009) Enabling a systems biology approach to immunology: focus on innate immunity. Trends Immunol 30:249–262

    Article  CAS  PubMed  Google Scholar 

  • Gazit E et al (1996) Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J Mol Biol 258:860–870

    Article  CAS  PubMed  Google Scholar 

  • Gregory SM et al (2008) A quantitative model for the all-or-none permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A. Biophys J 94:1667–1680

    Article  CAS  PubMed  Google Scholar 

  • Gregory SM, Pokorny A, Almeida PF (2009) Magainin 2 revisited: a test of the quantitative model for the all-or-none permeabilization of phospholipid vesicles. Biophys J 96:116–131

    Article  CAS  PubMed  Google Scholar 

  • Hamill P et al (2008) Novel anti-infectives: is host defence the answer? Curr Opin Biotechnol 19:628–636

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • He K et al (1996) Mechanism of alamethicin insertion into lipid bilayers. Biophys J 71:2669–2679

    Article  CAS  PubMed  Google Scholar 

  • Hong RW et al (2003) Transcriptional profile of the Escherichia coli response to the antimicrobial insect peptide cecropin A. Antimicrob Agents Chemother 47:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hristova K, Selsted ME, White SH (1997) Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J Biol Chem 272:24224–24233

    Article  CAS  PubMed  Google Scholar 

  • Huang HW, Chen FY, Lee MT (2004) Molecular mechanism of peptide-induced pores in membranes. Phys Rev Lett 92:198304

    Article  PubMed  Google Scholar 

  • Kazemzadeh-Narbat M et al (2010) Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 31:9519–9526

    Article  CAS  PubMed  Google Scholar 

  • Klein E, Smith DL, Laxminarayan R (2007) Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg Infect Dis 13:1840–1846

    PubMed  Google Scholar 

  • Ladokhin AS, Selsted ME, White SH (1997) Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys J 72:1762–1766

    Article  CAS  PubMed  Google Scholar 

  • Ludtke SJ et al (1996) Membrane pores induced by magainin. Biochemistry 35:13723–13728

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Yoneyama S, Miyajima K (1997) Pore formation and translocation of melittin. Biophys J 73:831–838

    Article  CAS  PubMed  Google Scholar 

  • Melo MN, Dugourd D, Castanho MA (2006) Omiganan pentahydrochloride in the front line of clinical applications of antimicrobial peptides. Recent Pat Antiinfect Drug Discov 1:201–207

    Article  CAS  PubMed  Google Scholar 

  • Merrifield RB, Vizioli LD, Boman HG (1982) Synthesis of the antibacterial peptide cecropin A (1–33). Biochemistry 21:5020–5031

    Article  CAS  PubMed  Google Scholar 

  • Ostolaza H et al (1993) Release of lipid vesicle contents by the bacterial protein toxin α-haemolysin. Biochim Biophys Acta 1147:81–88

    Article  CAS  PubMed  Google Scholar 

  • Otvos L Jr (2005) Antibacterial peptides and proteins with multiple cellular targets. J Pept Sci 11:697–706

    Article  CAS  PubMed  Google Scholar 

  • Otvos L Jr et al (2006) Prior antibacterial peptide-mediated inhibition of protein folding in bacteria mutes resistance enzymes. Antimicrob Agents Chemother 50:3146–3149

    Article  CAS  PubMed  Google Scholar 

  • Pittet D et al (2008) Infection control as a major World Health Organization priority for developing countries. J Hosp Infect 68:285–292

    Article  CAS  PubMed  Google Scholar 

  • Pokorny A, Almeida PF (2004) Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides. Biochemistry 43:8846–8857

    Article  CAS  PubMed  Google Scholar 

  • Pokorny A et al (2008) The activity of the amphipathic peptide delta-lysin correlates with phospholipid acyl chain structure and bilayer elastic properties. Biophys J 95:4748–4755

    Article  CAS  PubMed  Google Scholar 

  • Qian S et al (2008) Structure of the alamethicin pore reconstructed by X-ray diffraction analysis. Biophys J 94:3512–3522

    Article  CAS  PubMed  Google Scholar 

  • Rapaport D, Shai Y (1991) Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers. J Biol Chem 266:23769–23775

    CAS  PubMed  Google Scholar 

  • Rathinakumar R, Wimley WC (2008) Biomolecular engineering by combinatorial design and high-throughput screening: small, soluble peptides that permeabilize membranes. J Am Chem Soc 130:9849–9858

    Article  CAS  PubMed  Google Scholar 

  • Rathinakumar R, Wimley WC (2010) High-throughput discovery of broad-spectrum peptide antibiotics. FASEB J 24:3232–3238

    Article  CAS  PubMed  Google Scholar 

  • Rathinakumar R, Walkenhorst WF, Wimley WC (2009) Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity. J Am Chem Soc 131:7609–7617

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D et al (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 1778:2308–2317

    Article  CAS  PubMed  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  CAS  PubMed  Google Scholar 

  • Steiner H et al (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32:590–592

    Article  Google Scholar 

  • Westerhoff HV et al (1989) Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci USA 86:6597–6601

    Article  CAS  PubMed  Google Scholar 

  • White SH, Wimley WC, Selsted ME (1995) Structure, function, and membrane integration of defensins. Curr Opin Struct Biol 5:521–527

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5:905–917

    Article  CAS  PubMed  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  PubMed  Google Scholar 

  • Yount NY, Yeaman MR (2004) Multidimensional signatures in antimicrobial peptides. Proc Natl Acad Sci USA 101:7363–7368

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants GM060000, GM068619 and GM095930. We dedicate this review to our advisor Stephen H. White, in whose laboratory we completed our first AMP research projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Wimley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wimley, W.C., Hristova, K. Antimicrobial Peptides: Successes, Challenges and Unanswered Questions. J Membrane Biol 239, 27–34 (2011). https://doi.org/10.1007/s00232-011-9343-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-011-9343-0

Keywords

Navigation