Skip to main content
Log in

Neutral Evolution of Ten Types of mariner Transposons in the Genomes of Caenorhabditis elegans and Caenorhabditis briggsae

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Ten types of mariner transposable elements (232 individual sequences) are present in the completed genomic DNA sequence of Caenorhabditis elegans and the partial sequence of Caenorhabditis briggsae. We analyze these replicated instances of mariner evolution and find that elements of a type have evolved within their genomes under no selection on their transposase genes. Seven of the ten reconstructed ancestral mariners carry defective transposase genes. Selection has acted during the divergence of some ancestral elements. The neutrally-evolving mariners are used to analyze the pattern of molecular evolution in Caenorhabditis. There is a significant mutational bias against transversions and significant variation in rates of change across sites. Deletions accumulate at a rate of 0.034 events/bp per substitution/site, with an average size of 166 bp (173 gaps observed). Deletions appear to obliterate preexisting deletions over time, creating larger gaps. Insertions accumulate at a rate of 0.019 events/bp per substitution/site, with an average size of 151 bp (61 events). Although the rate of deletion is lower than most estimates in other species, the large size of deletions causes rapid elimination of neutral DNA: a mariner‘s “half-life” (the time by which half an element’s sequence should have been deleted) is ~0.1 subsitutions/site. This high rate of DNA deletion may explain the compact nature of the nematode genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. I Arkhipova M Meselson (2000) ArticleTitleTransposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci USA 97 14473–14477 Occurrence Handle10.1073/pnas.97.26.14473 Occurrence Handle1:CAS:528:DC%2BD3MXitVCqsA%3D%3D Occurrence Handle11121049

    Article  CAS  PubMed  Google Scholar 

  2. D Bensasson DA Petrov DX Zhang DL Hartl GM Hewitt (2001) ArticleTitleGenomic gigantism: DNA loss is slow in mountain grasshoppers. Mol Biol Evol 18 246–253 Occurrence Handle1:CAS:528:DC%2BD3MXotVOlsQ%3D%3D Occurrence Handle11158383

    CAS  PubMed  Google Scholar 

  3. P Capy F Chakrani F Lemeunier DL Hartl JR David (1990) ArticleTitleActive mariner transposable elements are widespread in natural populations of Drosophila simulans. Proc R Soc Lond B Biol Sci 242 57–60 Occurrence Handle1:STN:280:By6C38nht1M%3D Occurrence Handle1980741

    CAS  PubMed  Google Scholar 

  4. InstitutionalAuthorNameThe Caenorhabditis elegans Sequencing Consortium (1998) ArticleTitleGenome sequence of the nematode C. elegans: a platform for investigating biology. Science 282 2012–2018 Occurrence Handle9851916

    PubMed  Google Scholar 

  5. TG Doak FP Doerder CL Jahn G Herrick (1994) ArticleTitleA proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common “D35E” motif. Proc Natl Acad Sci USA 91 942–946 Occurrence Handle1:CAS:528:DyaK2cXhsFGnu70%3D

    CAS  Google Scholar 

  6. JW Drake B Charlesworth D Charlesworth JF Crow (1998) ArticleTitleRates of spontaneous mutation. Genetics 148 1667–1686

    Google Scholar 

  7. G Drouin F Prat M Ell GD Clarke (1999) ArticleTitleDetecting and characterizing gene conversions between multigene family members. Mol Biol Evol 16 1369–1390 Occurrence Handle1:CAS:528:DyaK1MXms1Ojt7Y%3D Occurrence Handle10563017

    CAS  PubMed  Google Scholar 

  8. AWF Edwards (1992) Likelihood. Johns Hopkins University Press Baltimore

    Google Scholar 

  9. G Garcia-Fernandez JR Bayascas-Ramirez G Marfany AM Munoz-Marmol A Casali et al. (1995) ArticleTitleHigh copy number of highly similar mariner-like transposons in planarian (Platyhelminthe): evidence for a trans-phyla horizontal transfer. Mol Biol Evol 12 421–431 Occurrence Handle1:CAS:528:DyaK2MXltF2ntbo%3D Occurrence Handle7739384

    CAS  PubMed  Google Scholar 

  10. N Goldman S Whelan (2000) ArticleTitleStatistical tests of gamma-distributed rate heterogeneity in models of sequence evolution in phylogenetics. Mol Biol Evol 17 975–978 Occurrence Handle1:CAS:528:DC%2BD3cXjvFygsLw%3D Occurrence Handle10833204

    CAS  PubMed  Google Scholar 

  11. D Graur Y Shuali WH Li (1989) ArticleTitleDeletions in processed pseudogenes accumulate faster in rodents than in humans. J Mol Evol 28 279–285 Occurrence Handle1:CAS:528:DyaL1MXitVKqsbc%3D Occurrence Handle2499684

    CAS  PubMed  Google Scholar 

  12. X Gu YX Fu WH Li (1995) ArticleTitleMaximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Mol Biol Evol 12 546–557

    Google Scholar 

  13. X Gu WH Li (1995) ArticleTitleThe size distribution of insertions and deletions in human and rodent pseudogenes suggests the logarithmic gap penalty for sequence alignment. J Mol Evol 40 464–473 Occurrence Handle1:CAS:528:DyaK2MXltVektro%3D Occurrence Handle7769622

    CAS  PubMed  Google Scholar 

  14. Z Ivics PB Hackett RH Plasterk Z Izsvak (1997) ArticleTitleMolecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91 501–510 Occurrence Handle1:CAS:528:DyaK2sXnsFGlsbk%3D Occurrence Handle9390559

    CAS  PubMed  Google Scholar 

  15. T Jarvik KG Lark (1998) ArticleTitleCharacterization of Soymarl, a mariner element in soybean. Genetics 149 1569–1574 Occurrence Handle1:CAS:528:DyaK1cXkslOnu70%3D Occurrence Handle9649543

    CAS  PubMed  Google Scholar 

  16. IK Jordan JF McDonald (1999) ArticleTitleThe role of interelement selection in Saccharomyces cerevisiae Ty element evolution. J Mol Evol 49 352–357 Occurrence Handle1:CAS:528:DyaK1MXmtlGksb4%3D Occurrence Handle10473776

    CAS  PubMed  Google Scholar 

  17. DJ Lampe KK Walden HM Robertson (2001) ArticleTitleLoss of transposase-DNA interaction may underlie the divergence of mariner family transposable elements and the ability of more than one mariner to occupy the same genome. Mol Biol Evol 18 954–961 Occurrence Handle1:CAS:528:DC%2BD3MXktFemtbw%3D Occurrence Handle11371583

    CAS  PubMed  Google Scholar 

  18. AR Lohe D de Aguiar DL Hartl (1997) ArticleTitleMutations in the mariner transposase: the D,D(35)E consensus sequence is nonfunctional. Proc Natl Acad Sci USA 94 1293–1297 Occurrence Handle1:CAS:528:DyaK2sXhtlKisb0%3D Occurrence Handle9037046

    CAS  PubMed  Google Scholar 

  19. AR Lohe EN Moriyama DA Lidholm DL Hartl (1995) ArticleTitleHorizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol Biol Evol 12 62–72 Occurrence Handle1:CAS:528:DyaK2MXivVahtbg%3D Occurrence Handle7877497

    CAS  PubMed  Google Scholar 

  20. DR Maddison WP Maddison (2000) MacClade 4: analysis of phylogeny and character evolution. Sinauer Associates Sunderland, MA

    Google Scholar 

  21. DA Petrov DL Hartl (1998) ArticleTitleHigh rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol 15 293–302 Occurrence Handle1:CAS:528:DyaK1cXhtlyit7g%3D Occurrence Handle9501496

    CAS  PubMed  Google Scholar 

  22. DA Petrov ER Lozovskaya DL Hartl (1996) ArticleTitleHigh intrinsic rate of DNA loss in Drosophila. Nature 384 346–349 Occurrence Handle1:CAS:528:DyaK28Xnt1ajurc%3D Occurrence Handle8934517

    CAS  PubMed  Google Scholar 

  23. S Pietrokovski S Henikoff (1997) ArticleTitleA helix-turn-helix DNA-binding motif predicted for transposases of DNA transposons. Mol Gen Genet 254 689–695 Occurrence Handle1:CAS:528:DyaK2sXksFWjsb4%3D Occurrence Handle9202385

    CAS  PubMed  Google Scholar 

  24. WH Press SA Teukolsky WT Vetterling BP Flannery (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press Cambridge

    Google Scholar 

  25. RA Pulak P Anderson (1988) ArticleTitleStructures of spontaneous deletions in Caenorhabditis elegans. Mol Cell Biol 8 3748–3754 Occurrence Handle1:CAS:528:DyaL1cXls1CrsrY%3D Occurrence Handle3221864

    CAS  PubMed  Google Scholar 

  26. HM Robertson (1993) ArticleTitleThe mariner transposable element is widespread in insects. Nature 362 241–245 Occurrence Handle1:CAS:528:DyaK3sXltlGruro%3D Occurrence Handle8384700

    CAS  PubMed  Google Scholar 

  27. HM Robertson (1997) ArticleTitleMultiple mariner transposons in flatworms and hydras are related to those of insects. J Hered 88 195–201 Occurrence Handle1:CAS:528:DyaK2sXkt1emurg%3D Occurrence Handle9183847

    CAS  PubMed  Google Scholar 

  28. HM Robertson (1998) ArticleTitleTwo large families of chemoreceptor genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal extensive gene duplication, diversification, movement, and intron loss. Genome Res 8 449–463 Occurrence Handle1:CAS:528:DyaK1cXjt1alur4%3D Occurrence Handle9582190

    CAS  PubMed  Google Scholar 

  29. HM Robertson (2000) ArticleTitleThe large srh family of chemoreceptor genes in Caenorhabditis nematodes reveals processes of genome evolution involving large duplications and deletions and intron gains and losses. Genome Res 10 192–203 Occurrence Handle1:CAS:528:DC%2BD3cXhsVOks78%3D Occurrence Handle10673277

    CAS  PubMed  Google Scholar 

  30. HM Robertson ML Asplund (1996) ArticleTitle Bmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori. Insect Biochem Mol Biol 26 945–954 Occurrence Handle10.1016/S0965-1748(96)00061-6 Occurrence Handle1:CAS:528:DyaK2sXhtVyksb0%3D Occurrence Handle9014339

    Article  CAS  PubMed  Google Scholar 

  31. HM Robertson DJ Lampe (1995a) ArticleTitleDistribution of transposable elements in arthropods. Annu Rev Entomol 40 333–357 Occurrence Handle1:CAS:528:DyaK2MXjtVWltrc%3D

    CAS  Google Scholar 

  32. HM Robertson DJ Lampe (1995b) ArticleTitleRecent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol Biol Evol 12 850–862 Occurrence Handle1:CAS:528:DyaK2MXns1yqsbc%3D

    CAS  Google Scholar 

  33. HM Robertson EG MacLeod (1993) ArticleTitleFive major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol Biol 2 125–139 Occurrence Handle1:CAS:528:DyaK2cXisVSksrw%3D Occurrence Handle9087550

    CAS  PubMed  Google Scholar 

  34. HM Robertson R Martos (1997) ArticleTitleMolecular evolution of the second ancient human mariner transposon, Hsmar2, illustrates patterns of neutral evolution in the human genome lineage. Gene 205 219–228 Occurrence Handle1:CAS:528:DyaK1cXmtlWisA%3D%3D Occurrence Handle9461396

    CAS  PubMed  Google Scholar 

  35. HM Robertson KL Zumpano (1997) ArticleTitleMolecular evolution of an ancient mariner transposon, Hsmar1, in the human genome. Gene 205 203–217 Occurrence Handle1:CAS:528:DyaK1cXmtlWjsA%3D%3D Occurrence Handle9461395

    CAS  PubMed  Google Scholar 

  36. HM Robertson FN Soto-Adames KKO Walden RMP Avancini DJ Lampe (1998) The mariner transposons of animals: horizontally jumping genes. M Syvanen C Kado (Eds) Horizontal gene transfer. Chapman and Hall London 268–284

    Google Scholar 

  37. I Rogozin F Kondrashov G Glazko (2001) ArticleTitleUse of mutation spectra analysis software. Hum Mutat 17 83–102 Occurrence Handle1:CAS:528:DC%2BD3MXhtlGrs7g%3D Occurrence Handle11180592

    CAS  PubMed  Google Scholar 

  38. N Saitou S Ueda (1994) ArticleTitleEvolutionary rates of insertion and deletion in noncoding nucleotide sequences of primates. Mol Biol Evol 11 504–512 Occurrence Handle1:CAS:528:DyaK2cXktVamurw%3D Occurrence Handle8015443

    CAS  PubMed  Google Scholar 

  39. S Sawyer (1989) ArticleTitleStatistical tests for detecting gene conversion. Mol Biol Evol 6 526–538 Occurrence Handle1:CAS:528:DyaL1MXlvFWhtb4%3D Occurrence Handle2677599

    CAS  PubMed  Google Scholar 

  40. C Schlötterer D Tautz (1992) ArticleTitleSlippage synthesis of simple sequence DNA. Nucleic Acids Res 20 211–215 Occurrence Handle1741246

    PubMed  Google Scholar 

  41. MM Sedensky SJ Hudson B Everson PG Morgan (1994) ArticleTitleIdentification of a mariner-like repetitive sequence in C. elegans. Nucleic Acids Res 22 1719–1723 Occurrence Handle1:CAS:528:DyaK2cXksFWitLs%3D Occurrence Handle8202377

    CAS  PubMed  Google Scholar 

  42. DL Swofford (2000) PAUP*: phylogenetic analysis using parsimony (*and other methods) Sinauer Associates Sunderland, MA

    Google Scholar 

  43. DJ Witherspoon (1999) ArticleTitleSelective constraints on P-element evolution. Mol Biol Evol 16 472–478 Occurrence Handle1:CAS:528:DyaK1MXislShsrs%3D Occurrence Handle10331273

    CAS  PubMed  Google Scholar 

  44. KH Wolfe PM Sharp WH Li (1989) ArticleTitleMutation rates differ among regions of the mammalian genome. Nature 337 283–285 Occurrence Handle1:STN:280:BiaD1MjivVU%3D Occurrence Handle2911369

    CAS  PubMed  Google Scholar 

  45. Z Yang (1997) ArticleTitlePAML: a program package for phylogenetic analysis by maximum likelihood. CABIOS 13 555–556 Occurrence Handle1:CAS:528:DyaK2sXntlGnu7s%3D Occurrence Handle9367129

    CAS  PubMed  Google Scholar 

  46. JH Zar (1999) Biostatistical analysis. Prentice Hall Upper Saddle River, NJ

    Google Scholar 

Download references

Acknowledgements

We thank Thomas G. Doak, Glenn Herrick, and David Lampe for discussions which contributed to this research. This research was supported by PHS grant 5R01GM58826 to H. M. R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Witherspoon.

Additional information

When this work was done, both authors were affiliated with the University of Illinois at Urbana-Champaign. Dr. Witherspoon is now working in the private sector, Dr. Robertson remains affiliated with the University of Illinois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witherspoon, D.J., Robertson, H.M. Neutral Evolution of Ten Types of mariner Transposons in the Genomes of Caenorhabditis elegans and Caenorhabditis briggsae . J Mol Evol 56, 751–769 (2003). https://doi.org/10.1007/s00239-002-2450-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-002-2450-x

Keywords

Navigation