Skip to main content
Log in

Complete mtDNA of Ciona intestinalis Reveals Extensive Gene Rearrangement and the Presence of an atp8 and an Extra trnM Gene in Ascidians

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The complete mitochondrial genome (mtDNA) of the model organism Ciona intestinalis (Urochordata, Ascidiacea) has been amplified by long-PCR using specific primers designed on putative mitochondrial transcripts identified from publicly available mitochondrial-like expressed sequence tags. The C. intestinalis mtDNA encodes 39 genes: 2 rRNAs, 13 subunits of the respiratory complexes, including ATPase subunit 8 (atp8), and 24 tRNAs, including 2 tRNA-Met with anticodons 5′-UAU-3′and 5′-CAU-3′, respectively. All genes are transcribed from the same strand. This gene content seems to be a common feature of ascidian mtDNAs, as we have verified the presence of a previously undetected atp8 and of two trnM genes in the two other sequenced ascidian mtDNAs. Extensive gene rearrangement has been found in C. intestinalis with respect not only to the common Vertebrata/Cephalochordata/Hemichordata gene organization but also to other ascidian mtDNAs, including the cogeneric Ciona savignyi. Other features such as the absence of long noncoding regions, the shortness of rRNA genes, the low GC content (21.4%), and the absence of asymmetric base distribution between the two strands suggest that this genome is more similar to those of some protostomes than to deuterostomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. AM Aguinaldo JM Turbeville LS Linford MC Rivera JR Garey RA Raff JA Lake (1997) ArticleTitleEvidence for a clade of nematodes, arthropods and other moulting animals. Nature 387 489–493 Occurrence Handle1:CAS:528:DyaK2sXjsF2htbk%3D Occurrence Handle9168109

    CAS  PubMed  Google Scholar 

  2. CT Beagley R Okimoto DR Wolstenholme (1999) ArticleTitleMytilus mitochondrial DNA contains a functional gene for a tRNASer(UCN) with a dihydrouridine arm-replacement loop and a pseudo-tRNASer(UCN) gene. Genetics 152 641–652 Occurrence Handle1:CAS:528:DyaK1MXktFGgur8%3D Occurrence Handle10353906

    CAS  PubMed  Google Scholar 

  3. G Benson (1999) ArticleTitleTandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res 27 573–580 Occurrence Handle1:CAS:528:DyaK1MXhtVKmtrg%3D Occurrence Handle9862982

    CAS  PubMed  Google Scholar 

  4. M Blanchette T Kunisawa D Sankoff (1999) ArticleTitleGene order breakpoint evidence in animal mitochondrial phylogeny. J Mol Evol 49 193–203 Occurrence Handle1:CAS:528:DyaK1MXltFSktrw%3D Occurrence Handle10441671

    CAS  PubMed  Google Scholar 

  5. JL Boore (1999) ArticleTitleAnimal mitochondrial genomes. Nucleic Acids Res 27 1767–1780 Occurrence Handle10.1093/nar/27.8.1767 Occurrence Handle1:CAS:528:DyaK1MXivVersbo%3D Occurrence Handle10101183

    Article  CAS  PubMed  Google Scholar 

  6. JL Boore (2001) ArticleTitleComplete mitochondrial genome sequence of the polychaete annelid Platynereis dumerilii. Mol Biol Evol 18 1413–1416 Occurrence Handle1:CAS:528:DC%2BD3MXltVGqsrw%3D Occurrence Handle11420379

    CAS  PubMed  Google Scholar 

  7. JL Boore LL Daehler WM Brown (1999) ArticleTitleComplete sequence, gene arrangement, and genetic code of mitochondrial DNA of the cephalochordate Branchiostoma floridae (Amphioxus). Mol Biol Evol 16 410–418 Occurrence Handle1:CAS:528:DyaK1MXhvVOqtLc%3D Occurrence Handle10331267

    CAS  PubMed  Google Scholar 

  8. CB Cameron JR Garey BJ Swalla (2000) ArticleTitleEvolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc Natl Acad Sci USA 97 4469–4474 Occurrence Handle1:CAS:528:DC%2BD3cXivFKjsLo%3D Occurrence Handle10781046

    CAS  PubMed  Google Scholar 

  9. JJ Cannone S Subramanian MN Schnare JR Collett LM D’Souza Y Du B Feng N Lin LV Madabusi KM Muller N Pande Z Shang N Yu RR Gutell (2002) ArticleTitleThe Comparative RNA Web (CRW) site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs: Correction. BMC Bioinform 3 15 Occurrence Handle10.1186/1471-2105-3-15

    Article  Google Scholar 

  10. P Cantatore MN Gadaleta M Roberti C Saccone AC Wilson (1987) ArticleTitleDuplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature 329 853–855 Occurrence Handle10.1038/329853a0 Occurrence Handle1:CAS:528:DyaL2sXmtlSmsr4%3D Occurrence Handle3670390

    Article  CAS  PubMed  Google Scholar 

  11. TW Christianson DA Clayton (1986) ArticleTitleIn vitro transcription of human mitochondrial DNA: Accurate termination. Proc Natl Acad Sci USA 83 6277–6281 Occurrence Handle1:CAS:528:DyaL28Xlt1ymtLY%3D Occurrence Handle3018722

    CAS  PubMed  Google Scholar 

  12. M Copello L Devos F Lafargue (1981) ArticleTitle Ciona edwardsi (Roule, 1886) espèce littorale de méditerranée distincte de Ciona intestinalis Linné, 1767. Vie Milieu 31 243–253

    Google Scholar 

  13. M Cserzo E Wallin I Simon G von Heijne A Elofsson (1997) ArticleTitlePrediction of transmembrane alpha-helices in procariotic membrane proteins: The dense alignment surface method. Prot Eng 10 673–676 Occurrence Handle10.1093/protein/10.6.673 Occurrence Handle1:CAS:528:DyaK2sXlsF2qtbk%3D

    Article  CAS  Google Scholar 

  14. P Dehal Y Satou RK Campbell J Chapman B Degnan A De Tomaso B Davidson A Di Gregorio M Gelpke DM Goodstein N Harafuji KE Hastings I Ho K Hotta W Huang T Kawashima P Lemaire D Martinez IA Meinertzhagen S Necula M Nonaka N Putnam S Rash H Saiga M Satake A Terry L Yamada HG Wang S Awazu K Azumi J Boore M Branno S Chin-Bow R DeSantis S Doyle P Francino DN Keys S Haga H Hayashi K Hino KS Imai K Inaba S Kano K Kobayashi M Kobayashi BI Lee KW Makabe C Manohar G Matassi M Medina Y Mochizuki S Mount T Morishita S Miura A Nakayama S Nishizaka H Nomoto F Ohta K Oishi I Rigoutsos M Sano A Sasaki Y Sasakura E Shoguchi T Shin-i A Spagnuolo D Stainier MM Suzuki O Tassy N Takatori M Tokuoka K Yagi F Yoshizaki S Wada C Zhang PD Hyatt F Larimer C Detter N Doggett T Glavina T Hawkins P Richardson S Lucas Y Kohara M Levine N Satoh DS Rokhsar (2002) ArticleTitleThe draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298 2157–2167 Occurrence Handle10.1126/science.1080049 Occurrence Handle1:CAS:528:DC%2BD38XpsVSkt7o%3D Occurrence Handle12481130

    Article  CAS  PubMed  Google Scholar 

  15. RJ Devenish T Papakonstantinou M Galanis RH Law AW Linnane P Nagley (1992) ArticleTitleStructure/function analysis of yeast mitochondrial ATP synthase subunit 8. Ann NY Acad Sci 671 403–414 Occurrence Handle1:CAS:528:DyaK3sXhvVKgsbg%3D Occurrence Handle1288337

    CAS  PubMed  Google Scholar 

  16. GA Durrheim VA Corfield EH Harley MH Ricketts (1993) ArticleTitleNucleotide sequence of cytochrome oxidase (subunit III) from the mitochondrion of the tunicate Pyura stolonifera: Evidence that AGR encodes glycine. Nucleic Acids Res 21 3587–3588 Occurrence Handle1:CAS:528:DyaK3sXmtFyktb8%3D Occurrence Handle8393993

    CAS  PubMed  Google Scholar 

  17. IM Fearnley JE Walker (1986) ArticleTitleTwo overlapping genes in bovine mitochondrial DNA encode membrane components of ATP synthase. EMBO J 5 2003–2008 Occurrence Handle1:CAS:528:DyaL28Xls1Gqtb4%3D Occurrence Handle2875870

    CAS  PubMed  Google Scholar 

  18. F Foury T Roganti N Lecrenier B Purnelle (1998) ArticleTitleThe complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440 325–313 Occurrence Handle1:CAS:528:DyaK1cXnvVSqsrg%3D Occurrence Handle9872396

    CAS  PubMed  Google Scholar 

  19. C Gissi G Pesole (2003) ArticleTitleTranscript mapping and genome annotation of ascidian mtDNA using EST data. Genome Res 13 2203–2212 Occurrence Handle10.1101/gr.1227803 Occurrence Handle1:CAS:528:DC%2BD3sXnslKhtb4%3D Occurrence Handle12915488

    Article  CAS  PubMed  Google Scholar 

  20. MW Gray BF Lang R Cedergren GB Golding C Lemieux D Sankoff M Turmel N Brossard E Delage TG Littlejohn I Plante P Rioux D Saint-Louis Y Zhu G Burger (1998) ArticleTitleGenome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res 26 865–878 Occurrence Handle1:CAS:528:DyaK1cXhvVWnsL0%3D Occurrence Handle9461442

    CAS  PubMed  Google Scholar 

  21. G Grillo M Attimonelli S Liuni G Pesole (1996) ArticleTitleCLEANUP: A fast computer program for removing redundancies from nucleotide. Comput Appl Biosci 12 1–8 Occurrence Handle1:CAS:528:DyaK28XisF2gsLk%3D Occurrence Handle8670613

    CAS  PubMed  Google Scholar 

  22. JE Hixson TW Wong DA Clayton (1986) ArticleTitleBoth the conserved stem-loop and divergent 5′-flanking sequences are required for initiation at the human mitochondrial origin of light- strand DNA replication. J Biol Chem 261 2384–2093 Occurrence Handle1:CAS:528:DyaL28XhtVegtrs%3D Occurrence Handle3944140

    CAS  PubMed  Google Scholar 

  23. RJ Hoffmann JL Boore WM Brown (1992) ArticleTitleA novel mitochondrial genome organization for the blue mussel, Mytilus edulis. Genetics 131 397–412 Occurrence Handle1:CAS:528:DyaK2cXis1anurk%3D Occurrence Handle1386586

    CAS  PubMed  Google Scholar 

  24. PWH Holland J Garcia-Fernàndez NA Williams A Sidow (1994) ArticleTitleGene duplications and the origins of vertebrate development. Development 1994 125–133

    Google Scholar 

  25. Z Hoshino T Nishikawa (1985) ArticleTitleTaxonomic studies of Ciona intestinalis (L.) and its allies. Publ Seto Mar Biol Lab 10 61–79

    Google Scholar 

  26. M Hu NB Chilton RB Gasser (2002) ArticleTitleThe mitochondrial genomes of the human hookworms, Ancylostoma duodenale and Necator americanus (Nematoda: Secernentea). Int J Parasitol 32 145–158 Occurrence Handle10.1016/S0020-7519(01)00316-2 Occurrence Handle1:CAS:528:DC%2BD38Xms1agsA%3D%3D Occurrence Handle11812491

    Article  CAS  PubMed  Google Scholar 

  27. HT Jacobs P Balfe B Cohen A Farquharson L Comito (1988) Phylogenetic implications of genome rearrangement and sequence evolution in echinoderm mitochondrial DNA. CRC Paul AB Smith (Eds) Echinoderm phylogeny and evolutionary biology. Clarendon Press Oxford 121–137

    Google Scholar 

  28. T Kakuda (2001) Mitochondrial DNA analysis of Boltenia echinata ibuki (OKA, 1934). H Sawada H Yokosawa CC Lambert (Eds) The biology of ascidians. Springer-Verlag Tokyo 283–289

    Google Scholar 

  29. A Kondow S Yokobori T Ueda K Watanabe (1998) ArticleTitleAscidian mitochondrial tRNA(Met) possessing unique structural characteristics. Nucleosides Nucleotides 17 531–539 Occurrence Handle1:CAS:528:DyaK1cXhvFeju74%3D Occurrence Handle9708361

    CAS  PubMed  Google Scholar 

  30. Y Kumazawa M Nishida (1993) ArticleTitleSequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J Mol Evol 37 380–398 Occurrence Handle1:CAS:528:DyaK3sXms1eru7k%3D Occurrence Handle7508516

    CAS  PubMed  Google Scholar 

  31. C Lambert F Lafargue G Lambert (1990) ArticleTitlePreliminary note on the genetic isolation of Ciona species (Ascidiacea, Urochordata). Vie Milieu 40 293–295

    Google Scholar 

  32. G Lambert (2001) A global overview os ascidian introductions and their possible impact on the endemic fauna. H Sawada H Yokosawa CC Lambert (Eds) The biology of ascidians. Springer-Verlag Tokyo 249–257

    Google Scholar 

  33. DV Lavrov WM Brown (2001) ArticleTitleTrichinella spiralis mtDNA: A nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAS and has a gene arrangement relatable to those of coelomate metazoans. Genetics 157 621–637 Occurrence Handle1:CAS:528:DC%2BD3MXhtlynsLo%3D Occurrence Handle11156984

    CAS  PubMed  Google Scholar 

  34. TH Le D Blair T Agatsuma P-F Humair NJH Campbell M Iwagami DT Littlewood B Peacock DA Johnston J Bartley D Rollinson EA Herniou DS Zarlenga DP McManus (2000) ArticleTitlePhylogenies inferred from mitochondrial gene orders-a cautionary tale from. Mol Biol Evol 17 1123–1125 Occurrence Handle1:CAS:528:DC%2BD3cXksVOlsrs%3D Occurrence Handle10889225

    CAS  PubMed  Google Scholar 

  35. TM Lowe SR Eddy (1997) ArticleTitletRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25 955–964 Occurrence Handle1:CAS:528:DyaK2sXhvVahtrk%3D Occurrence Handle9023104

    CAS  PubMed  Google Scholar 

  36. JR Macey JA, 2n Schulte A Larson BS Tuniyev N Orlov TJ Papenfuss (1999) ArticleTitleMolecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families. Mol Phylogenet Evol 12 250–227 Occurrence Handle10.1006/mpev.1999.0615 Occurrence Handle1:CAS:528:DyaK1MXksVOisr8%3D Occurrence Handle10413621

    Article  CAS  PubMed  Google Scholar 

  37. S Ohno (1970) Evolution by gene duplication. George Allen and Unwin London

    Google Scholar 

  38. T Papakonstantinou M Galanis P Nagley RJ Devenish (1993) ArticleTitleEach of three positively-charged amino acids in the C-terminal region of yeast mitochondrial ATP synthase subunit 8 is required for assembly. Biochim Biophys Acta 1144 22–32 Occurrence Handle10.1016/0005-2728(93)90026-C Occurrence Handle1:CAS:528:DyaK2cXjsVek Occurrence Handle8347659

    Article  CAS  PubMed  Google Scholar 

  39. T Papakonstantinou RH Law P Nagley RJ Devenish (1996a) ArticleTitleNon-functional variants of yeast mitochondrial ATP synthase subunit 8 that assemble into the complex. Biochem Mol Biol Int 39 253–260 Occurrence Handle1:CAS:528:DyaK2sXmt1yguw%3D%3D

    CAS  Google Scholar 

  40. T Papakonstantinou RH Law WS Nesbitt P Nagley RJ Devenish (1996b) ArticleTitleMolecular genetic analysis of the central hydrophobic domain of subunit 8 of yeast mitochondrial ATP synthase. Curr Genet 30 12–18 Occurrence Handle10.1007/s002940050094 Occurrence Handle1:CAS:528:DyaK28Xkt1Grsr8%3D

    Article  CAS  Google Scholar 

  41. NT Perna TD Kocher (1995) ArticleTitlePatterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41 353–358 Occurrence Handle1:CAS:528:DyaK2MXnslWnt7g%3D Occurrence Handle7563121

    CAS  PubMed  Google Scholar 

  42. G Pesole M Attimonelli C Saccone (1996) ArticleTitleLinguistic analysis of nucleotide sequences: Algorithms for pattern recognition and analysis of codon strategy. Methods Enzymol 266 281–294 Occurrence Handle1:CAS:528:DyaK28Xltl2ntrw%3D Occurrence Handle8743690

    CAS  PubMed  Google Scholar 

  43. G Pesole S Liuni M D’Souza (2000) ArticleTitlePatSearch: A pattern matcher software that finds functional elements in nucleotide and protein sequences and assesses their statistical significance. Bioinformatics 16 439–450

    Google Scholar 

  44. KJ Peterson DJ Eernisse (2001) ArticleTitleAnimal phylogeny and the ancestry of bilaterians: Inferences from morphology and 18S rDNA gene sequences. Evol Dev 3 170–205 Occurrence Handle10.1046/j.1525-142X.2001.003003170.x Occurrence Handle1:STN:280:DC%2BD38%2FhslCisA%3D%3D Occurrence Handle11440251

    Article  CAS  PubMed  Google Scholar 

  45. U Rajbhandary MC Chow (1995) Initiator tRNAs and initiation of protein synthesis. D Soll U Rajbhandary (Eds) tRNA structure, biosynthesis and function. American Society of Microbiology Washington, DC 511–528

    Google Scholar 

  46. A Reyes C Gissi G Pesole C Saccone (1998) ArticleTitleEvolution of asymmetric base composition in the mitochondrial genome of mammals. Mol Biol Evol 15 957–966 Occurrence Handle9718723

    PubMed  Google Scholar 

  47. C Saccone E Sbisà (1994) The evolution of the mitochondrial genome. EE Bittar (Eds) Principles of medical biology. JAI Press Greenwich, CT 39–72

    Google Scholar 

  48. C Saccone C De Giorgi C Gissi G Pesole A Reyes (1999) ArticleTitleEvolutionary genomics in Metazoa: The mitochondrial DNA as model system. Gene 238 195–209 Occurrence Handle10.1016/S0378-1119(99)00270-X Occurrence Handle1:CAS:528:DyaK1MXntFKnu7s%3D Occurrence Handle10570997

    Article  CAS  PubMed  Google Scholar 

  49. N Satoh (1994) Developmental biology of ascidians. Cambridge University Press New York

    Google Scholar 

  50. Y Satou N Takatori S Fujiwara T Nishikata H Saiga T Kusakabe T Shin-i Y Kohara N Satoh (2002) ArticleTitleCiona intestinalis cDNA projects: Expressed sequence tag analyses and gene expression profiles during embryogenesis. Gene 287 83–96 Occurrence Handle1:CAS:528:DC%2BD38XjtFygtL0%3D Occurrence Handle11992726

    CAS  PubMed  Google Scholar 

  51. G Seutin BF Lang DP Mindell R Morais (1994) ArticleTitleEvolution of the WANCY region in amniote mitochondrial DNA. Mol Biol Evol 11 329–340 Occurrence Handle1:CAS:528:DyaK2cXlt1Knt70%3D Occurrence Handle8015429

    CAS  PubMed  Google Scholar 

  52. DG Shu L Chen J Han XL Zhang (2001) ArticleTitleAn Early Cambrian tunicate from China. Nature 411 472–473 Occurrence Handle10.1038/35078069 Occurrence Handle1:CAS:528:DC%2BD3MXkt1ejsrg%3D Occurrence Handle11373678

    Article  CAS  PubMed  Google Scholar 

  53. M Sprinzl C Horn M Brown A Ioudovitch S Steinberg (1998) ArticleTitleCompilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 26 148–153 Occurrence Handle1:CAS:528:DyaK1cXovVansQ%3D%3D Occurrence Handle9399820

    CAS  PubMed  Google Scholar 

  54. N Spruyt C Delarbre G Gachelin V Laudet (1998) ArticleTitleComplete sequence of the amphioxus (Branchiostoma lanceolatum) mitochondrial genome: relations to vertebrates. Nucleic Acids Res 26 3279–3285 Occurrence Handle10.1093/nar/26.13.3279 Occurrence Handle1:CAS:528:DyaK1cXks1Gjs7w%3D Occurrence Handle9628930

    Article  CAS  PubMed  Google Scholar 

  55. T Stach JM Turbeville (2002) ArticleTitlePhylogeny of Tunicata inferred from molecular and morphological characters. Mol Phylogenet Evol 25 408–428 Occurrence Handle10.1016/S1055-7903(02)00305-6 Occurrence Handle1:CAS:528:DC%2BD38Xosl2gurY%3D Occurrence Handle12450747

    Article  CAS  PubMed  Google Scholar 

  56. AN Stephens MA Khan X Roucou P Nagley RJ Devenish (2003) ArticleTitleThe molecular neighborhood of subunit 8 of yeast mitochondrial F1F0-ATP synthase probed by cysteine scanning mutagenesis and chemical modification. J Biol Chem 278 17867–17875 Occurrence Handle10.1074/jbc.M300967200 Occurrence Handle1:CAS:528:DC%2BD3sXjs1KitLo%3D Occurrence Handle12626501

    Article  CAS  PubMed  Google Scholar 

  57. B Swalla (2001) Phylogeny of the Urochordates: Implications for Chordata evolution. H Sawada H Yokosawa CC Lambert (Eds) The biology of ascidians. Springer-Verlag Tokyo 219–224

    Google Scholar 

  58. BJ Swalla CB Cameron LS Corley JR Garey (2000) ArticleTitleUrochordates are monophyletic within the deuterostomes. Syst Biol 49 52–64 Occurrence Handle10.1080/10635150050207384 Occurrence Handle1:STN:280:DC%2BD38zntVKrug%3D%3D Occurrence Handle12116483

    Article  CAS  PubMed  Google Scholar 

  59. K Tomita T Ueda S Ishiwa PF Crain JA McCloskey K Watanabe (1999) ArticleTitleCodon reading patterns in Drosophila melanogaster mitochondria based on their tRNA sequences: A unique wobble rule in animal mitochondria. Nucleic Acids Res 27 4291–4297 Occurrence Handle10.1093/nar/27.21.4291 Occurrence Handle1:CAS:528:DyaK1MXnt1Gku78%3D Occurrence Handle10518623

    Article  CAS  PubMed  Google Scholar 

  60. JM Turbeville JR Schulz RA Raff (1994) ArticleTitleDeuterostome phylogeny and the sister group of the chordates: Evidence from molecules and morphology. Mol Biol Evol 11 648–655 Occurrence Handle1:CAS:528:DyaK2cXlt1yhur4%3D Occurrence Handle8078403

    CAS  PubMed  Google Scholar 

  61. JR Valverde R Marco R Garesse (1994) ArticleTitleA conserved heptamer motif for ribosomal RNA transcription termination in animal mitochondria. Proc Natl Acad Sci USA 91 5368–5371 Occurrence Handle1:CAS:528:DyaK2cXlt1Krsr0%3D Occurrence Handle7515499

    CAS  PubMed  Google Scholar 

  62. DR Wolstenholme (1992) ArticleTitleAnimal mitochondrial DNA: structure and evolution. Int Rev Cytol 141 173–216 Occurrence Handle1:CAS:528:DyaK3sXkt1Wgs78%3D Occurrence Handle1452431

    CAS  PubMed  Google Scholar 

  63. S Yokobori T Ueda K Watanabe (1993) ArticleTitleCodons AGA and AGG are read as glycine in ascidian mitochondria. J Mol Evol 36 1–8 Occurrence Handle1:CAS:528:DyaK3sXnsVKjuw%3D%3D Occurrence Handle8381878

    CAS  PubMed  Google Scholar 

  64. S Yokobori T Ueda G Feldmaier-Fuchs S Paabo R Ueshima A Kondow K Nishikawa K Watanabe (1999) ArticleTitleComplete DNA sequence of the mitochondrial genome of the ascidian Halocynthia roretzi (Chordata, Urochodata). Genetics 153 1851–1862

    Google Scholar 

  65. S Yokobori T Suzuki K Watanabe (2001) ArticleTitleGenetic code variations in mitochondria: tRNA as a major determinant of genetic code plasticity. J Mol Evol 53 314–326 Occurrence Handle10.1007/s002390010221 Occurrence Handle1:CAS:528:DC%2BD3MXotVaiu74%3D Occurrence Handle11675591

    Article  CAS  PubMed  Google Scholar 

  66. R Zardoya A Meyer (1996) ArticleTitleThe complete nucleotide sequence of the mitochondrial genome of the lungfish (Protopterus dolloi) supports its phylogenetic position as a close relative of land vertebrates. Genetics 142 1249–1263 Occurrence Handle1:CAS:528:DyaK28XivVGjtbg%3D Occurrence Handle8846902

    CAS  PubMed  Google Scholar 

  67. A Zhang (1987) ArticleTitleFossil appendicularians in the early Cambrian. Sci Sinica (B) 30 888–896 Occurrence Handle1:CAS:528:DyaL1cXnvFShtw%3D%3D

    CAS  Google Scholar 

  68. CJ Winchell J Sullivan CB Cameron BJ Swalla J Mallatt (2002) ArticleTitleEvaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Mol Biol Evol 19 762–776 Occurrence Handle1:CAS:528:DC%2BD38XjsFaku7k%3D Occurrence Handle11961109

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Progetto Giovani Ricercatori” of the University of Milano, FIRB project (Ministero dell’Istruzione e Ricerca Scientifica, Italy), and by Telethon. We thank David Horner, Flavio Mignone, and Cecilia Saccone for valuable comments on the manuscript, Prof. Rosaria De Santis for the gift of some Ciona intestinalis samples and help with ascidian total DNA extraction, and the Department of Biology (University of Milano) for the gift of Ciona intestinalis frozen tissues. We also thank an anonymous referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziano Pesole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gissi, C., Iannelli, F. & Pesole, G. Complete mtDNA of Ciona intestinalis Reveals Extensive Gene Rearrangement and the Presence of an atp8 and an Extra trnM Gene in Ascidians . J Mol Evol 58, 376–389 (2004). https://doi.org/10.1007/s00239-003-2559-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-2559-6

Keywords

Navigation