Skip to main content
Log in

Evolutionary Diversity of Vertebrate Small Heat Shock Proteins

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

All vertebrates express multiple small heat shock proteins (sHsps), which are important components of the cellular chaperoning machinery and display a spectacular diversity of functions. This ranges from remodeling the cytoskeleton and inhibiting apoptosis to serving as structural proteins in eye lens and sperm tail. Most information is available for the 10 known mammalian sHsps, formally named HspB1–B10. Only three of them (Hsp27/B1, αA-crystallin/B4, αB-crystallin/B5) have been reported from nonmammalian vertebrates, while an apparent paralog, Hsp30/B11, is found in frogs and teleost fish. To reconstruct the evolutionary diversification of the sHsps in vertebrates, we searched for additional sHsps in genome, protein, and EST databases and sequenced some avian and amphibian sHsps (HspB2, Hsp30/B11). The urochordate Ciona intestinalis was included in the search, as the outgroup of vertebrates. Orthologs of seven mammalian sHsps were now found in other vertebrate classes. Two novel sHsps, named HspB11 and HspB12, were recognized in birds, and four novel sHsps, named HspB12–B15, in teleost fish. Secondary structure predictions of orthologous sHsps from different vertebrate classes indicate conservation of the β-sandwich structure of the functionally important C-terminal “α-crystallin domain,” while the N-terminal domains generally have α-helical structures, despite their pronounced sequence variation. The constructed chordate sHsp tree is supported by shared introns, indels, and diagnostic sequences. The tree distinguishes putative orthologous and paralogous relationships, which will facilitate the functional and structural comparison of the various vertebrate sHsps. The 15 recognized paralogous vertebrate sHsps reflect the period of extensive gene duplications early in vertebrate evolution. Eleven of these sHsps are grouped in a clade that might be specific for chordates. It is inferred that at least 13 intron insertions have occurred during the evolution of chordate sHsp genes, while a single ancient intron is maintained in some lineages, in line with the general trend of massive intron gain before or during early vertebrate radiation. Interesting is the occurrence of several head-to-head located pairs of chordate sHsp genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  • N Adachi MR Lieber (2002) ArticleTitleBidirectional gene organization: A common architectural feature of the human genome Cell 109 807–809

    Google Scholar 

  • AP Arrigo WEG Müller (Eds) (2002) Small stress proteins Springer Verlag Berlin

    Google Scholar 

  • AP Arrigo C Paul C Ducasse F Manero C Kretz-Remy S Virot E Javouhey N Mounier C Diaz-Latoud (2002) ArticleTitleSmall stress proteins: Novel negative modulators of apoptosis induced independently of reactive oxygen species Prog Mol Subcell Biol 28 185–204

    Google Scholar 

  • M Behrens H Wilkens H Schmale (1998) ArticleTitleCloning of the αA-crystallin genes of a blind cave form and the epigean form of Astyanax fasciatus: A comparative analysis of structure, expression and evolutionary conservation Gene 216 319–326

    Google Scholar 

  • DA Benson I Karsch-Mizrachi DJ Lipman J Ostell DL Wheeler (2003) ArticleTitleGenBank Nucleic Acids Res 31 23–27 Occurrence Handle10.1093/nar/gkg057 Occurrence Handle1:CAS:528:DC%2BD3sXhvFSgu78%3D Occurrence Handle12519940

    Article  CAS  PubMed  Google Scholar 

  • OV Bukach AS Seit-Nebi SB Marston NB Gusev (2004) ArticleTitleSome properties of human small heat shock protein Hsp20 (HspB6) Eur J Biochem 271 291–302

    Google Scholar 

  • EP Candido D Jones DK Dixon RW Graham RH Russnak RJ Kay (1989) ArticleTitleStructure, organization, and expression of the 16-kDa heat shock gene family of Caenorhabditis elegans Genome 31 690–697

    Google Scholar 

  • C Combet C Blanchet C Geourjon G Detéage (2000) ArticleTitleNPS@: Network protein sequence analysis Trends Biochem Sci 291 147–150

    Google Scholar 

  • RR Copley I Letunic P Bork (2002) ArticleTitleGenome and protein evolution in eukaryotes Curr Opin Chem Biol 6 39–45

    Google Scholar 

  • P Dehal Y Satou RK Campbell J Chapman B Degnan A Tomaso ParticleDe B Davidson (2002) ArticleTitleThe draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins Science 298 2157–2167 Occurrence Handle10.1126/science.1080049 Occurrence Handle1:CAS:528:DC%2BD38XpsVSkt7o%3D Occurrence Handle12481130

    Article  CAS  PubMed  Google Scholar 

  • WW Jong Particlede GJ Caspers JA Leunissen (1998) ArticleTitleGenealogy of the α-crystallin–small heat-shock protein superfamily Int J Biol Macromol 22 151–162

    Google Scholar 

  • NJW Wit Particlede P Verschuure G Kappé SM King WW Jong Particlede WC Boelens GNP Muijen Particlevan (2004) ArticleTitleTestis-specific human small heat shock protein HspB9 is a novel cancer/testis antigen, and interacts with the dynein subunit TCTEL1 Eur J Cell Biol 83 337–345

    Google Scholar 

  • L Doerwald T Rheede Particlevan RP Dirks O Madsen R Rexwinkel ST Genesen Particlevan GJ Martens WW Jong Particlede NH Lubsen (2004) ArticleTitleSequence and functional conservation of the intergenic region between the head-to-head genes encoding the small heat shock proteins αB-crystallin and HspB2 in the mammalian lineage J Mol Evol 59 674–686

    Google Scholar 

  • H Escriva L Manzon J Youson V Laudet (2002) ArticleTitleAnalysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution Mol Biol Evol 19 1440–1450 Occurrence Handle1:CAS:528:DC%2BD38XntVyht7o%3D Occurrence Handle12200472

    CAS  PubMed  Google Scholar 

  • OV Evgrafov I Mersiyanova J Irobi L Bosch ParticleVan Den I Dierick CL Leung O Schagina N Verpoorten K Impe ParticleVan V Fedotov E Dadali M Auer-Grumbach C Windpassinger K Wagner Z Mitrovic D Hilton-Jones K Talbot JJ Martin N Vasserman S Tverskaya A Polyakov RK Liem J Gettemans W Robberecht P Jonghe ParticleDe V Timmerman (2004) ArticleTitleMutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy Nat Genet 36 602–606 Occurrence Handle10.1038/ng1354 Occurrence Handle1:CAS:528:DC%2BD2cXksVajtrk%3D Occurrence Handle15122254

    Article  CAS  PubMed  Google Scholar 

  • A Fedorov S Roy L Fedorova W Gilbert (2003) ArticleTitleMystery of intron gain Genome Res 13 2236–2241

    Google Scholar 

  • J Felsenstein (2002) PHYLIP (phylogeny inference package), version 3.6a3 Department of Genetics, University of Washington Seattle

    Google Scholar 

  • P Fernando LA Megeney JJ Heikkila (2003) ArticleTitlePhosphorylation-dependent structural alterations in the small hsp30 chaperone are associated with cellular recovery Exp Cell Res 286 175–185

    Google Scholar 

  • CR Flynn P Komalavilas D Tessier J Thresher EE Niederkofler CM Dreiza RW Nelson A Panitch L Joshi CM Brophy (2003) ArticleTitleTransduction of biologically active motifs of the small heat shock-related protein HSP20 leads to relaxation of vascular smooth muscle FASEB J 17 1358–1360

    Google Scholar 

  • JM Fontaine JS Rest MJ Welsh R Benndorf (2003) ArticleTitleThe sperm outer dense fiber protein is the 10th member of the superfamily of mammalian small stress proteins Cell Stress Chaperones 8 62–69

    Google Scholar 

  • R Friedman AL Hughes (2003) ArticleTitleThe temporal distribution of gene duplication events in a set of highly conserved human gene families Mol Biol Evol 20 154–161 Occurrence Handle10.1093/molbev/msg017 Occurrence Handle1:CAS:528:DC%2BD3sXktlOqtg%3D%3D Occurrence Handle12519918

    Article  CAS  PubMed  Google Scholar 

  • S Guindon O Gascuel (2003) ArticleTitleA simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood Syst Biol 52 696–704 Occurrence Handle10.1080/10635150390235520 Occurrence Handle14530136

    Article  PubMed  Google Scholar 

  • M Haslbeck J Buchner (2002) ArticleTitleChaperone function of sHsps Prog Mol Subcell Biol 28 37–59 Occurrence Handle1:CAS:528:DC%2BD38XivVGrurs%3D Occurrence Handle11908065

    CAS  PubMed  Google Scholar 

  • J Horwitz (1992) ArticleTitleα-Crystallin can function as a molecular chaperone Proc Natl Acad Sci USA 89 10449–10453

    Google Scholar 

  • JP Huelsenbeck F Ronquist (2001) ArticleTitleMRBAYES: Bayesian inference of phylogenetic trees Bioinformatics 17 754–755 Occurrence Handle10.1093/bioinformatics/17.8.754 Occurrence Handle1:STN:280:DC%2BD3MvotV2isw%3D%3D Occurrence Handle11524383

    Article  CAS  PubMed  Google Scholar 

  • J Irobi KV Impe P Seeman A Jordanova I Dierick N Verpoorten A Michalik ED Vriendt A Jacobs VV Gerwen K Vennekens R Mazanec I Tournev D Hilton-Jones K Talbot I Kremensky LV Bosch W Robberecht J Vandekerckhove CV Broeckhoven J Gettemans PD Jonghe V Timmerman (2004) ArticleTitleHot-spot residue in small heat-shock protein 22 causes distal motor neuropathy Nat Genet 36 597–601 Occurrence Handle10.1038/ng1328 Occurrence Handle1:CAS:528:DC%2BD2cXksVajtrg%3D Occurrence Handle15122253

    Article  CAS  PubMed  Google Scholar 

  • A Iwaki T Nagano M Nakagawa T Iwaki Y Fukumaki (1997) ArticleTitleIdentification and characterization of the gene encoding a new member of the α-crystallin/small hsp family, closely linked to the αB-crystallin gene in a head-to-head manner Genomics 45 386–394

    Google Scholar 

  • JC Jeffery (2003) ArticleTitleMoonlighting proteins: Old proteins learning new tricks Trends Genet 19 415–417

    Google Scholar 

  • H Kaessmann S Zollner A Nekrutenko WH Li (2002) ArticleTitleSignatures of domain shuffling in the human genome Genome Res 12 1642–1650

    Google Scholar 

  • G Kappé P Verschuure RL Philipsen AA Staalduinen P Boogaart ParticleVan de WC Boelens WW Jong Particlede (2001) ArticleTitleCharacterization of two novel human small heat shock proteins: Protein kinase-related HspB8 and testis-specific HspB9 Biochim Biophys Acta 1520 1–6

    Google Scholar 

  • G Kappé JAM Leunissen WW Jong Particlede (2002) ArticleTitleEvolution and diversity of prokaryotic small heat shock proteins Prog Mol Subcell Biol 28 1–17

    Google Scholar 

  • G Kappé E Franck P Verschuure WC Boelens JA Leunissen WW Jong Particlede (2003) ArticleTitleThe human genome encodes 10 α-crystallin-related small heat shock proteins: HspB1–10 Cell Stress Chaperones 8 53–61 Occurrence Handle10.1379/1466-1268(2003)8<53:THGECS>2.0.CO;2 Occurrence Handle1:CAS:528:DC%2BD3sXjsFWjsL4%3D Occurrence Handle12820654

    Article  CAS  PubMed  Google Scholar 

  • Y Kawazoe M Tanabe A Nakai (1999) ArticleTitleUbiquitous and cell-specific members of the avian small heat shock protein family FEBS Lett 455 271–275

    Google Scholar 

  • KK Kim R Kim SH Kim (1998) ArticleTitleCrystal structure of a small heat-shock protein Nature 394 595–599

    Google Scholar 

  • PH Krone A Snow A Ali JJ Pasternak JJ Heikkila (1992) ArticleTitleComparison of regulatory and structural regions of the Xenopus laevis small heat-shock protein-encoding gene family Gene 110 159–166

    Google Scholar 

  • J Landry P Chretien H Lambert E Hickey LA Weber (1989) ArticleTitleHeat shock resistance conferred by expression of the human HSP27 gene in rodent cells Cell Biol 109 7–15

    Google Scholar 

  • P Liang R Amons TH MacRae JS Clegg (1997) ArticleTitlePurification, structure and in vitro molecular-chaperone activity of Artemia p26, a small heat-shock/alpha-crystallin protein Eur J Biochem 243 225–232

    Google Scholar 

  • SF Lu FM Pan SH Chiou (1995) ArticleTitleSequence analysis of frog αB-crystallin cDNA: sequence homology and evolutionary comparison of αA, αB and heat shock proteins Biochem Biophys Res Commun 216 881–891

    Google Scholar 

  • DS Mackay UP Andley A Shiels (2003) ArticleTitleCell death triggered by a novel mutation in the αA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q Eur J Hum Genet 11 784–793

    Google Scholar 

  • M Madera J Gough (2002) ArticleTitleA comparison of profile hidden Markov model procedures for remote homology detection Nucleic Acids Res 30 4321–4328

    Google Scholar 

  • A McLysaght K Hokamp KH Wolfe (2002) ArticleTitleExtensive genomic duplication during early chordate evolution Nat Genet 31 200–204

    Google Scholar 

  • T Miron K Vancompernolle J Vandekerckhove M Wilchek B Geiger (1991) ArticleTitleA 25-kD inhibitor of actin polymerization is a low molecular mass heat shock protein J Cell Biol 114 255–261 Occurrence Handle10.1083/jcb.114.2.255 Occurrence Handle1:CAS:528:DyaK38XhtVWgsrc%3D Occurrence Handle2071672

    Article  CAS  PubMed  Google Scholar 

  • F Narberhaus (2002) ArticleTitleα-Crystallin-type heat shock proteins: Socializing minichaperones in the context of a multichaperone network Microbiol Mol Biol Rev 66 64–93

    Google Scholar 

  • CE Norris LE Hightower (2002) ArticleTitleDiscovery of two distinct small heat shock protein (HSP) families in the desert fish Poeciliopsis Prog Mol Subcell Biol 28 19–35

    Google Scholar 

  • OO Panasenko A Seit Nebi OV Bukach SB Marston NB Gusev (2002) ArticleTitleStructure and properties of avian small heat shock protein with molecular weight 25 kDa Biochim Biophys Acta 1601 64–74

    Google Scholar 

  • SY Pasta R Bakthisaran R Tangirala CM Rao (2003) ArticleTitleRole of the conserved SRLFDQFFG region of α-crystallin, a small heat shock protein: Effect on oligomeric size, subunit ex change and chaperone-like activity J Biol Chem 278 51159– 51166

    Google Scholar 

  • J Piatigorsky (1998) ArticleTitleGene sharing in lens and cornea: Facts and implications Prog Retin Eye Res 17 145–174

    Google Scholar 

  • J Piatigorsky (2003) ArticleTitleCrystallin genes: Specialization by changes in gene regulation may precede gene duplication J Struct Funct Genomics 3 131–137

    Google Scholar 

  • M Posner M Kantorow J Horwitz (1999) ArticleTitleCloning, sequencing and differential expression of αB-crystallin in the zebrafish, Danio rerio Biochim Biophys Acta 1447 271–277

    Google Scholar 

  • E Pras M Frydman E Levy-Nissenbaum T Bakhan J Raz EI Assia B Goldman E Pras (2000) ArticleTitleA nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family Invest Ophthalmol Vis Sci 41 3511–3515

    Google Scholar 

  • R Quinlan (2002) ArticleTitleCytoskeletal competence requires protein chaperones Prog Mol Subcell Biol 28 219–234

    Google Scholar 

  • IB Rogozin YI Wolf AV Sorokin BG Mirkin EV Koonin (2003) ArticleTitleRemarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution Curr Biol 13 1512–1517

    Google Scholar 

  • A Rokas PW Holland (2000) ArticleTitleRare genomic changes as a tool for phylogenetics Trends Ecol Evol 15 454–459

    Google Scholar 

  • B Rost C Sander (1993) ArticleTitlePrediction of protein secondary structure at better than 70% accuracy J Mol Biol 232 584–599 Occurrence Handle10.1006/jmbi.1993.1413 Occurrence Handle1:CAS:528:DyaK3sXmt1WjurY%3D Occurrence Handle8345525

    Article  CAS  PubMed  Google Scholar 

  • E Salaneck DH Ardell ET Larson D Larhammar (2003) ArticleTitleThree neuropeptide Y receptor genes in the spiny dogfish, Squalus acanthias, support en bloc duplications in early vertebrate evolution Mol Biol Evol 20 1271–1280

    Google Scholar 

  • A Sato WE Mayer J Klein (2003) ArticleTitleA molecule bearing an immunoglobulin-like V region of the CTX subfamily in amphioxus Immunogenetics 55 423–427

    Google Scholar 

  • K Sawada K Agata G Eguchi (1992) ArticleTitleCrystallin gene expression in the process of lentoidogenesis in cultures of chicken lens epithelial cells Exp Eye Res 55 879–887

    Google Scholar 

  • K-D Scharf M Siddique E Vierling (2001) ArticleTitleThe expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins) Cell Stress Chaperones 6 225–237

    Google Scholar 

  • D Selcen AG Engel (2003) ArticleTitleMyofibrillar myopathy caused by novel dominant negative alpha B-crystallin mutations Ann Neurol 54 804–810 Occurrence Handle10.1002/ana.10767 Occurrence Handle1:CAS:528:DC%2BD2cXht1eruw%3D%3D Occurrence Handle14681890

    Article  CAS  PubMed  Google Scholar 

  • X Shao FA Hoorn Particlevan der (1996) ArticleTitleSelf-interaction of the major 27-kilodalton outer dense fiber protein is in part mediated by a leucine zipper domain in the rat Biol Reprod 55 1343–1350

    Google Scholar 

  • Y Sugiyama A Suzuki M Kishikawa R Akutsu T Hirose MM Waye SK Tsui S Yoshida S Ohno (2000) ArticleTitleMuscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation J Biol Chem 275 1095–1104 Occurrence Handle10.1074/jbc.275.2.1095 Occurrence Handle1:CAS:528:DC%2BD3cXntlehtQ%3D%3D Occurrence Handle10625651

    Article  CAS  PubMed  Google Scholar 

  • D Takai PA Jones (2004) ArticleTitleThe origins of bi-directional promoters: Computational analyses of intergenic distance in the human genome Mol Biol Evol 21 463–467

    Google Scholar 

  • JD Thompson TJ Gibson F Plewniak F Jeanmougin DG Higgins (1997) ArticleTitleThe CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools Nucleic Acids Res 25 4876–4882 Occurrence Handle10.1093/nar/25.24.4876 Occurrence Handle1:CAS:528:DyaK1cXntFyntQ%3D%3D Occurrence Handle9396791

    Article  CAS  PubMed  Google Scholar 

  • ND Trinklein SF Aldred SJ Hartman DI Schroeder RP Otillar RM Myers (2004) ArticleTitleAn abundance of bidirectional promoters in the human genome Genome Res 14 62–66

    Google Scholar 

  • NM Tsvetkova I Horvath Z Torok WF Wolkers Z Balogi N Shigapova LM Crowe F Tablin E Vierling JH Crowe L Vigh (2002) ArticleTitleSmall heat-shock proteins regulate membrane lipid polymorphism Proc Natl Acad Sci USA 99 13504–13509

    Google Scholar 

  • Y Van de Peer JS Taylor A Meyer (2003) ArticleTitleAre all fishes ancient polyploids? J Struct Funct Genomics 3 65–73

    Google Scholar 

  • RL van Montfort E Basha KL Friedrich C Slingsby E Vierling (2001a) ArticleTitleCrystal structure and assembly of a eukaryotic small heat shock protein Nat Struct Biol 8 1025–1030

    Google Scholar 

  • R van Montfort C Slingsby E Vierling (2001b) ArticleTitleStructure and function of the small heat shock protein/α-crystallin family of molecular chaperones Adv Protein Chem 59 105–156

    Google Scholar 

  • P Vicart A Caron P Guicheney Z Li MC Prevost A Faure D Chateau F Chapon F Tome JM Dupret D Paulin M Fardeau (1998) ArticleTitleA missense mutation in the alpha B-crystallin chaperone gene causes a desmin-related myopathy Nat Genet 20 92–95 Occurrence Handle10.1038/1765 Occurrence Handle1:CAS:528:DyaK1cXmtVOmurk%3D Occurrence Handle9731540

    Article  CAS  PubMed  Google Scholar 

  • ER Waters E Vierling (1999) ArticleTitleChloroplast small heat shock proteins: Evidence for atypical evolution of an organelle-localized protein Proc Natl Acad Sci USA 96 14394–14399

    Google Scholar 

  • S Whelan N Goldman (2001) ArticleTitleA general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach Mol Biol Evol 18 691– 699 Occurrence Handle1:CAS:528:DC%2BD3MXjtFyktr4%3D Occurrence Handle11319253

    CAS  PubMed  Google Scholar 

  • M Wieske R Benndorf J Behlke R Dolling G Grelle H Bielka G Lutsch (2001) ArticleTitleDefined sequence segments of the small heat shock proteins HSP25 and αB-crystallin inhibit actin polymerization Eur J Biochem 268 2083–2090

    Google Scholar 

Download references

Acknowledgments

We thank Akie Sato and Jan Klein (Tubingen) for providing the EST of B. lanceolatum BlHsp24.1, Remco Rexwinkel for sequencing this sHsp, Guido Kappé for useful discussions, and the Netherlands Organization for Scientific Research (NWO-ALW) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried W. de Jong.

Additional information

Reviewing Editor: Dr. John Huelsenbeck

(Teun van Rheede) Deceased May 21, 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franck, E., Madsen, O., van Rheede, T. et al. Evolutionary Diversity of Vertebrate Small Heat Shock Proteins. J Mol Evol 59, 792–805 (2004). https://doi.org/10.1007/s00239-004-0013-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0013-z

Keywords

Navigation