Skip to main content
Log in

A “Green” Phosphoribulokinase in Complex Algae with Red Plastids: Evidence for a Single Secondary Endosymbiosis Leading to Haptophytes, Cryptophytes, Heterokonts, and Dinoflagellates

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Phosphoribulokinase (PRK) is an essential enzyme of photosynthetic eukaryotes which is active in the plastid-located Calvin cycle and regenerates the substrate for ribulose-bisphosphate carboxylase/oxygenase (Rubisco). Rhodophytes and chlorophytes (red and green algae) recruited their nuclear-encoded PRK from the cyanobacterial ancestor of plastids. The plastids of these organisms can be traced back to a single primary endosymbiosis, whereas, for example, haptophytes, dinoflagellates, and euglenophytes obtained their “complex” plastids through secondary endosymbioses, comprising the engulfment of a unicellular red or green alga by a eukaryotic host cell. We have cloned eight new PRK sequences from complex algae as well as a rhodophyte in order to investigate their evolutionary origin. All available PRK sequences were used for phylogenetic analyses and the significance of alternative topologies was estimated by the approximately unbiased test. Our analyses led to several astonishing findings. First, the close relationship of PRK genes of haptophytes, heterokontophytes, cryptophytes, and dinophytes (complex red lineage) supports a monophyletic origin of their sequences and hence their plastids. Second, based on PRK genes the complex red lineage forms a highly supported assemblage together with chlorophytes and land plants, to the exclusion of the rhodophytes. This green affinity is in striking contrast to the expected red algal origin and our analyses suggest that the PRK gene was acquired once via lateral transfer from a green alga. Third, surprisingly the complex green lineages leading to Bigelowiella and Euglena probably also obtained their PRK genes via lateral gene transfers from a red alga and a complex alga with red plastids, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Archibald J, Rogers M, Toop M, Ishida K, Keeling P (2003) Lateral gene transfer and the evolution of plastid–targeted proteins in the secondary plastid-containing alga Bigelowiella natans Proc Natl Acad Sci USA 100:7678–7683

    CAS  PubMed  Google Scholar 

  • Bachvaroff TR, Concepcion GT, Rogers CR, Herman EM, Delwiche CF (2004) Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome Protist 155:65–78

    Article  CAS  PubMed  Google Scholar 

  • Bapteste E, Brinkmann H, Lee JA, Moore DV, Sensen CW, Gordon P, Durufle L, Gaasterland T, Lopez P, Muller M, Philippe H (2002) The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba Proc Natl Acad Sci USA 99:1414–1419

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Helmchen T, Melkonian M (1995) Molecular evolutionary analyses of nuclear-encoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphina and the Chlorarachniophyta J Eukaryot Microbiol 42:65–69

    CAS  PubMed  Google Scholar 

  • Brinkmann H, Philippe H (1999) Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies Mol Biol Evol 16:817–825

    CAS  PubMed  Google Scholar 

  • Cai X, Fuller AL, McDougald LR, Zhu G (2003) Apicoplast genome of the coccidian Eimeria tenella Gene 321:39–46

    Article  CAS  PubMed  Google Scholar 

  • Calvin M, (1956) The photosynthetic carbon cycle J Chem Soc 1956:1895–1915

    Google Scholar 

  • Cavalier-Smith T (1986) The kingdom Chromista: origin and systematics. In: Round FE, Chapman DJ (eds) Progress in phycological research, Vol 4. Biopress, Bristol, UK, pp 309–347

    Google Scholar 

  • Cavalier-Smith T, (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree J Euk Microbiol 46:347–366

    CAS  Google Scholar 

  • Daugbjerg N, Andersen R (1997) Phylogenetic analyses of the rbcL sequences from haptophytes and heterokont algae suggest their chloroplasts are unrelated Mol Biol Evol 14:1242–1251

    CAS  PubMed  Google Scholar 

  • Delwiche C, (1999) Tracing the thread of plastid diversity through the tapestry of life Am Nat 154:S164–S177

    Article  PubMed  Google Scholar 

  • Delwiche C, Palmer J (1997) The origin of plastids and their spread via secondary symbiosis. In: Bhattacharya D (ed) Origins of algae and their plastids. Springer Verlag, Wien, pp 53–86

    Google Scholar 

  • Dooijes D, Chaves I, Kieft R, Martin W, Borst P (2000) Base J originally found in kinetoplastida is also a minor constituent of nuclear DNA of Euglena gracilis Nucleic Acid Res 28:3017–3021

    CAS  PubMed  Google Scholar 

  • Doolittle WF, (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes Trends Genet 14:307–311

    CAS  PubMed  Google Scholar 

  • Douglas S, (1998) Plastid evolution: origins, diversity, trends Curr Opin Genet Dev 8:655–661

    Article  CAS  PubMed  Google Scholar 

  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu X, Reith M, Cavalier-Smith T, Maier UG (2001) The highly reduced genome of an enslaved algal nucleus Nature 410:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR (1999) A phylogentic assessment of plastids and eukaryotic light–harvesting antenna proteins J Mol Evol 48:59–68

    Article  CAS  PubMed  Google Scholar 

  • Fagan T, Hastings W, Morse D (1998) Phylogeny of glyceraldehyde-3-phosphate dehydrogenase indicates lateral transfer from cryptomonads to dinoflagellates J Mol Evol 47:633–639

    Article  CAS  PubMed  Google Scholar 

  • Fast N, Kissinger J, Roos D, Keeling P (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids Mol Biol Evol 18:418–426

    CAS  PubMed  Google Scholar 

  • Felsenstein J, (1978) Cases in which parsimony and compatibility methods will be positively misleading Syst Zool 27:401–410

    Google Scholar 

  • Felsenstein J (2004) http://www.evolution.genetics.washington.edu/phylip.html

  • Figge RM, Schubert M, Brinkmann H, Cerff R (1999) Glyceraldehyde-3-phosphate dehydrogenase gene diversity in eubacteria and eukaryotes: evidence for intra- and inter-kingdom gene transfer Mol Biol Evol 16:429–440

    CAS  PubMed  Google Scholar 

  • Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P, King M, Gonzalez-Halphen D (2002) A green algal apicoplast ancestor Science 298:2155

    Article  CAS  PubMed  Google Scholar 

  • Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P, King M, Gonzalez-Halphen D (2003) Response to comment on “A Green Algal Apicoplast Ancestor” Science 301:49

    Article  Google Scholar 

  • Gascuel O, (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data Mol Biol Evol 14:685–695

    CAS  PubMed  Google Scholar 

  • Gilson PR, McFadden GI (1997) Good things in small packages: the tiny genomes of chlorarachniophyte endosymbionts Bioessays 19:167–173

    Article  CAS  PubMed  Google Scholar 

  • Gray MW, Lang BF, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Brossard N, Delage E, Littlejohn TG, Plante I, Rioux P, Saint-Louis D, Zhu Y, Burger G (1998) Genome structure and gene content in protist mitochondrial DNAs Nucleic Acids Res 26:865–878

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hackett JD, Yoon HS, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Nosenko T, Bhattacharya D (2004) Migration of the plastid genome to the nucleus in a peridinin dinoflagellate Curr Biol 14:213–218

    Article  CAS  PubMed  Google Scholar 

  • Harper J, Keeling P (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids Mol Biol Evol 20:1730–1735

    CAS  PubMed  Google Scholar 

  • Harrison D, Runquist J, Holub A, Miziorko H (1998) The crystal structure of phosphoribulokinase from Rhodobacter sphaeroides reveals a fold similar to that of adenylate kinase Biochemistry 37:5074–5085

    Article  CAS  PubMed  Google Scholar 

  • Häuber MM, Müller SB, Speth V, Maier UG (1994) How to evolve a complex plastid? – A hypothesis Bot Acta 107:383–386

    Google Scholar 

  • Henze K, Badr A, Wettern M, Cerff R, Martin W (1995) A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution Proc Natl Acad Sci USA 92:9122–9126

    CAS  PubMed  Google Scholar 

  • Horsnell P, Raines C (1991) Nucleotide sequence of a cDNA clone encoding chloroplast phosphoribulokinase from Arabidopsis thaliana Plant Mol Biol 17:183–184

    CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Inagaki Y, Simpson A, Dacks J, Roger A (2004) Phylogenetic artifacts can be caused by leucine, serine, and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study Syst Biol 53:582–593

    Article  PubMed  Google Scholar 

  • Ishida K, Cao Y, Hasegawa M, Okada N, Hara Y (1997) The origin of chlorarachniophyte plastids, as inferred from phylogenetic comparisons of amino acid sequences of EF-Tu J Mol Evol 45:682–768

    Article  CAS  PubMed  Google Scholar 

  • Ishida K, Green BR, Cavalier-Smith T (1999) Diversification of a chimaeric algal group, the Chlorachniophytes: Phylogeny of nuclear and nucleomorph small-subunit rRNA genes Mol Biol Evol 16:321–331

    CAS  Google Scholar 

  • Kersanach R, Brinkmann H, Liaud MF, Zhang DX, Martin W, Cerff R (1994) Five identical intron positions in ancient duplicated genes of eubacterial origin Nature 367:387–389

    Article  CAS  PubMed  Google Scholar 

  • Kies L, Kremer B (1990) Phylum Glaucocystophyta. In: Margulis L, Corliss J, Melkonian M, Chapman D (eds) Handbook of Protoctista. Jones & Bartlett, Boston, pp 152–166

    Google Scholar 

  • Köhler S, Delwiche C, Denny P, Tilney L, Webster P, Wilson R, Palmer J, Roos D (1997) A plastid of probable green algal origin in apicomplexan parasites Science 275:1485–1489

    PubMed  Google Scholar 

  • Leister D, Schneider A (2004) Evolutionary contribution of plastid genes to plant nuclear genomes and its effects on composition of the proteomes of all cellular compartments. In: Hirt RP, Horner DS (eds) Organelle, genomes and eukaryote phylogeny: An evolutionary synthesis in the age of genomics. Systematics Association Special Vol 68. CRC Press, Boca Raton, FL, pp 237–255

    Google Scholar 

  • Liaud M, Brandt U, Scherzinger M, Cerff R (1997) Evolutionary origin of cryptomonad microalgae: two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components J Mol Evol 44(Suppl 1):S28–S37

    CAS  PubMed  Google Scholar 

  • Liaud M, Lichtle C, Apt K, Martin W, Cerff R (2000) Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway Mol Biol Evol 7:213–223

    Google Scholar 

  • Long M, Cerff R (2003) Introns: Movements. In: Cooper D (ed) Nature encyclopedia of the human genome. Nature, Maximilian, pp 547–551

    Google Scholar 

  • Martin W, Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis Curr Genet 32:1–18

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: How much, what happens, and why? Plant Physiol 118:9–17

    CAS  PubMed  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hapsmann S, Hasegawa M, Kowallik K (1998) Gene transfer to the nucleus and the evolution of chloroplasts Nature 393:162–165

    CAS  PubMed  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus Proc Natl Acad Sci USA 99:12246–12251

    CAS  PubMed  Google Scholar 

  • Maslov D, Yasuhira S, Simpson L (1999) Phylogentic affinities of Diplonema within the Euglenozoa as inferred from the SSU rRNA gene and partial COI protein sequences Protist 150:33–42

    CAS  PubMed  Google Scholar 

  • McFadden GI, Gilson PR, Hofmann CJ, Adcock GJ, Maier UG (1994) Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga Proc Natl Acad Sci USA 91:3690–3694

    CAS  PubMed  Google Scholar 

  • McFadden GI, Gilson PR, Waller RF (1995) Molecular phylogeny of Chlorarachniophytes based on plastid rRNA and rbcL sequences Arch Protistenkd 145:231–239

    Google Scholar 

  • McFadden GI, Gilson PR, Hofman CJ (1997) Division Chlorarachniophyta. In: Bhattacharya D (ed) Origins of algae and their plastids. Springer Verlag, Wien, pp 175–185

    Google Scholar 

  • Medlin LK, Kooistra WG, Potter D, Saunders GW, Andersen RA (1997) Phylogenetic relationships of the “golden algae” (haptophytes, heterokont chromophytes) and their plastids. In: Bhattacharya D (ed) Origins of algae and their plastids. Springer Verlag, Wien, pp 187–219

    Google Scholar 

  • Meyer-Gauen G, Herbrand H, Pahnke J, Cerff R, Martin W (1998) Gene structure, expression in Escherichia coli and biochemical properties of the NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Pinus sylvestris chloroplasts Gene 209:167–174

    Article  CAS  PubMed  Google Scholar 

  • Milanez S, Mural R (1988) Cloning and sequencing of cDNA encoding the mature form of phosphoribulokinase from spinach Gene 66:55–63

    Article  CAS  PubMed  Google Scholar 

  • Morse D, Salois P, Markovic P, Hastings JW (1995) A nuclear-encoded form II RuBisCO in dinoflagellates Science 268:1622–1624

    CAS  PubMed  Google Scholar 

  • Nozaki H, Matsuzaki M, Takahara M, Misumi O, Kuroiwa H, Hasegawa M, Shin-i T, Kohara Y, Ogasawara N, Kuroiwa T (2003) The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids J Mol Evol 56:485–497

    Article  CAS  PubMed  Google Scholar 

  • Patron NJ, Rogers MB, Keeling PJ (2004) Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates Eukaryot Cell 3:1169–1175

    Article  CAS  PubMed  Google Scholar 

  • Petersen J, Brinkmann H, Cerff R (2003) Origin, evolution, and metabolic role of a novel glycolytic GAPDH enzyme recruited by land plant plastids J Mol Evol 57:16–26

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, (1993) MUST, a computer package of management utilities for sequences and trees Nucleic Acids Res 2:5264–5272

    Google Scholar 

  • Philippe H, Lopez P, Brinkmann H, Budin K, Germot A, Laurent J, Moreira D, Muller M, Le Guyader H (2000) Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions Proc R Soc Lond B Biol Sci 267:1213–1221

    CAS  Google Scholar 

  • Raines C, Longstaff M, Lloyd J, Dyer T (1989) Complete coding sequence of wheat phosphoribulokinase: developmental and light-dependent expression of the mRNA Mol Gen Genet 220:43–48

    CAS  PubMed  Google Scholar 

  • Roesler KR, Ogren WL (1990) Primary structure of Chlamydomonas reinhardtii ribulose 1,5-bisphosphate carboxylase/oxygenase activase and evidence for a single polypeptide Plant Physiol 93:188–193

    CAS  Google Scholar 

  • Rogers M, Keeling PJ (2004) Lateral transfer and recompartmentalization of Calvin cycle enzymes of plants and algae J Mol Evol 58:367–375

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. 2nd ed. Cold Spring Habor Laboratory Press, Cold Spring Habor, NY

    Google Scholar 

  • Sanchez Puerta MV, Bachvaroff TR, Delwiche CF (2004) The complete mitochondrial genome sequence of the haptophyte Emiliania huxleyi and its relation to heterokonts DNA Res 11:1–10

    PubMed  Google Scholar 

  • Schlösser UG, (1994) SAG–Sammlung von Algenkulturen at the University of Göttingen. Catalogue of Strains 1994 Bot Acta 107:113–186

    Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing Bioinformatics 18:502–504

    Article  CAS  PubMed  Google Scholar 

  • Schwarz-Sommer ZS, Shepherd N, Tacke E, Gierl A, Rohde W, Leclerc L, Mattes M, Berndtgen R, Petersen PA, Saedler H (1987) Influence of transposable elements on the structure and function of the A1 gene of Zea mays EMBO J 6:287–294

    CAS  PubMed  Google Scholar 

  • Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection Bioinformatics 17:1246–1247

    Article  CAS  PubMed  Google Scholar 

  • Stoebe B, Kowallik K (1999) Gene-cluster analysis in chloroplast genomics Trends Genet 15:344–347

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (1999) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Takishita K, Ishida K, Maruyama T (2003) An enigmatic GAPDH gene in the symbiotic dinoflagellate genus Symbiodinium and its related species (the order Suessiales): possible lateral gene transfer between two eukaryotic algae, dinoflagellate and euglenophyte Protist 154:443–454

    Article  CAS  PubMed  Google Scholar 

  • Takishita K, Ishida K, Maruyama T (2004) Phylogeny of nuclear-encoded plastid-targeted GAPDH gene supports separate origins for the peridinin- and the fucoxanthin derivative-containing plastids of dinoflagellates Protist 155:447–458

    Article  CAS  PubMed  Google Scholar 

  • Tengs T, Dahlberg O, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche C, Jakobsen K (2000) Phylogenetic analyses indicate that the 19’hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin Mol Biol Evol 17:718–729

    CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Van de Peer Y, De Wachter R (1997) Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA J Mol Evol 45:619–630

    PubMed  Google Scholar 

  • Van de Peer Y, Rensing SA, Maier UG, De Wachter R (1996) Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae Proc Natl Acad Sci USA 93:7732–7726

    PubMed  Google Scholar 

  • Van de Peer Y, Baldauf SL, Doolittle WF, Meyer A (2000) An updated and comprehensive rRNA phylogeny of (crown) eukaryotes based on rate-calibrated evolutionary distances J Mol Evol 51:565–576

    PubMed  Google Scholar 

  • Waller RF, Keeling PJ, van Dooren GG, McFadden GI (2003) Comment on “A Green Algal Apicoplast Ancestor” Science 301:49a

    Article  Google Scholar 

  • Yang Z, (1997) PAML: a program for package for phylogenetic analysis by maximum likelihood CABIOS 15:555–556

    Google Scholar 

  • Yoon HS, Hackett JD, Bhattacharya D (2002a) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis Proc Natl Acad Sci USA 99:11724–11729

    CAS  Google Scholar 

  • Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002b) The single, ancient origin of chromist plastids Proc Natl Acad Sci USA 99:15507–15512

    CAS  Google Scholar 

  • Zhang Z, Green BR, Cavalier–Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes Nature 400:155

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Woodland Hastings (Harvard) for the cDNA libraries from Pyrocystis lunula and Lingulodinium polyedrum, William Martin (Düsseldorf) for the cDNA library from Euglena gracilis, Geoff McFadden (Melbourne) for provision of genomic DNA from Bigelowiella natans, Sarina Scharbatke (Hannover) for excellent technical assistance, and Carina Grau-vogel for critical discussions. We are grateful to Naiara Rodriguez-Ezpeleta for helpful comments on an earlier version of the manuscript. The associate editor and four anonymous reviewers provided very helpful suggestions. Major financial support, including a Ph.D. stipend for R.T., was received from the Deutsche Forschungsgemeinschaft (CE 1/27-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Petersen.

Additional information

[Reviewing Editor: Dr. Patrick Keeling ]

The nucleotide sequence data will appear in the DDBJ/EMBL/GenBank International Nucleotide Sequence Database under the following accession numbers. cDNA clones: AY772245 (Pavlova lutheri); AY772246 (Guillardia theta); AY772247 (Lingulodinium polyedrum); AY772248 and AY772249 (Pyrocystis lunula); AY772250 (Euglena gracilis); AY772251 (Chondrus crispus). Genomic clone: AY772252 (Prymnesium parvum). Genomic PCR clone: AY772253 (Bigelowiella natans).

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, J., Teich, R., Brinkmann, H. et al. A “Green” Phosphoribulokinase in Complex Algae with Red Plastids: Evidence for a Single Secondary Endosymbiosis Leading to Haptophytes, Cryptophytes, Heterokonts, and Dinoflagellates. J Mol Evol 62, 143–157 (2006). https://doi.org/10.1007/s00239-004-0305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0305-3

Keywords

Navigation