Skip to main content
Log in

Novel Relationships Among Ten Fish Model Species Revealed Based on a Phylogenomic Analysis Using ESTs

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The power of comparative phylogenomic analyses also depends on the amount of data that are included in such studies. We used expressed sequence tags (ESTs) from fish model species as a proof of principle approach in order to test the reliability of using ESTs for phylogenetic inference. As expected, the robustness increases with the amount of sequences. Although some progress has been made in the elucidation of the phylogeny of teleosts, relationships among the main lineages of the derived fish (Euteleostei) remain poorly defined and are still debated. We performed a phylogenomic analysis of a set of 42 of orthologous genes from 10 available fish model systems from seven different orders (Salmoniformes, Siluriformes, Cypriniformes, Tetraodontiformes, Cyprinodontiformes, Beloniformes, and Perciformes) of euteleostean fish to estimate divergence times and evolutionary relationships among those lineages. All 10 fish species serve as models for developmental, aquaculture, genomic, and comparative genetic studies. The phylogenetic signal and the strength of the contribution of each of the 42 orthologous genes were estimated with randomly chosen data subsets. Our study revealed a molecular phylogeny of higher-level relationships of derived teleosts, which indicates that the use of multiple genes produces robust phylogenies, a finding that is expected to apply to other phylogenetic issues among distantly related taxa. Our phylogenomic analyses confirm that the euteleostean superorders Ostariophysi and Acanthopterygii are monophyletic and the Protacanthopterygii and Ostariophysi are sister clades. In addition, and contrary to the traditional phylogenetic hypothesis, our analyses determine that killifish (Cyprinodontiformes), medaka (Beloniformes), and cichlids (Perciformes) appear to be more closely related to each other than either of them is to pufferfish (Tetraodontiformes). All 10 lineages split before or during the fragmentation of the supercontinent Pangea in the Jurassic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: Selection of best-fit models of protein evolution. Bioinformatics 21:2104–2015

    Article  PubMed  CAS  Google Scholar 

  • Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1283–1285

    Article  Google Scholar 

  • Arratia G (1999) The monophyly of teleostei and stem-group teleosts. In: Arratia G, Schultze HP (eds) Mesozoic fish 2: Systematics and fossil record. Pfeil, Munich

  • Benton MJ (1993). The fossil record, vol. 2. Chapman and Hall, London

    Google Scholar 

  • Berg LS (1958) System der rezenten und fossilen Fischartigen und Fische. Verlag der Wissenschaften, Berlin

    Google Scholar 

  • Cavender (1991) The fossile record of the Cyprinidae. In: Winfield IJ, Nelson JS (eds) Cyprinid fish: Systematics, biology and exploitation. Fish and Fisheries Series 3. Chapman and Hall, London

  • Chen WJ, Bonillo C, Lecointre G (2003) Repeatability of clades as a criterion of reliability:a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol Phylogenet Evol 26:262–288

    Article  PubMed  CAS  Google Scholar 

  • Chen WJ, Orti G, Meyer A (2004) Novel evolutionary relationship among four fish model systems. Trends Genet 20:424–431

    Article  PubMed  CAS  Google Scholar 

  • Collette BB (2003) Family Belonidae Bonaparte 1832—needlefish. Calif Acad Sci Annot Checklists Fish 16:1–22

    Google Scholar 

  • Cummings MP, Meyer A (2005) Magic bullets and golden rules: data sampling in molecular phylogenetics. Zoology 108:329–336

    Article  PubMed  Google Scholar 

  • Cummings MP, Otto SP, Wakeley J (1995) Sampling properties of DNA sequence data in phylogenetic analysis. Mol Biol Evol 12:814–822

    PubMed  CAS  Google Scholar 

  • De Pinna MCC (1996) Teleostean monophyly. In: Stiassny MLJ, Parenti LR, Johnson GD (eds) Interrelationships of fish. Academic Press, San Diego

  • Felsenstein J, (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (1989) Phylogenetic inference programs (PHYLIP). University of Washington, Seattle, and University Herbarium, University of California, Berkeley

    Google Scholar 

  • Fink SV, Fink WL (1996) Interrelationships of ostariophysan fish (Teleostei). In: Stiassny MLJ, Parenti LR, Johnson GD (eds) Interrelationships of fish. Academic Press, San Diego

  • Gadagkar SR, Rosenberg MS, Kumar S (2005) Inferring species phylogenies from multiple genes:Concatenated sequence tree versus consensus gene tree. Mol Dev Evol 304B:64–74

    Article  CAS  Google Scholar 

  • Gerhold D, Caskey CT (1996) It’s the genes! EST access to human genome content. Bioessays 18:973–981

    Article  PubMed  CAS  Google Scholar 

  • Greenwood PH, Rosen DE, Weitzman SH, Mayers GS (1966) Phyletic studies of teleostean fish, with a provisional classification of living forms. Bull Am Mus Nat Hist 131:339–455

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Helfman GS, Collette BB, Facey DE (1997) The diversity of fish. Blackwell Science, Cambridge, MA

    Google Scholar 

  • Hillis DM (1998) Taxonomic sampling, phylogenetic accuracy, and investigator bias. Syst Biol 47:3–8

    Article  PubMed  CAS  Google Scholar 

  • Hillis DM, Pollock DD, McGuire JA, Zwickl DJ (2003) Is sparse taxon sampling a problem for phylogenetic inference? Syst Biol 52:124–126

    PubMed  Google Scholar 

  • Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Longhorn SJ, Papadopoulou A, Theodorides K, de Riva A, Mejia-Chang M, Foster PG, Vogler AP (2006) Dense taxonomic EST sampling and its applications for molecular systematics of the Coleoptera (beetles). Mol Biol Evol 23:268–278

    Article  PubMed  Google Scholar 

  • Inoue JG, Miya M, Tsukamoto K, Nishida M (2004) Mitogenomic evidence for the monophyly of elopomorph fish (Teleostei) and the evolutionary origin of the leptocephalus larva. Mol Phylogenet Evol 32:274–286

    Article  PubMed  CAS  Google Scholar 

  • Inoue JG, Miya M, Venkatesh B, Nishida M (2005) The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. Gene 349:227–235

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro NB, Miya M, Nishida M (2003) Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the “Protacanthopterygii.” Mol Phylogenet Evol 27:476–488

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  • Johnson GD, Patterson C (1993) Percomorph phylogeny: a survey of acanthomorphs and a new proposal. Bull Mar Sci 52:554–626

    Google Scholar 

  • Johnson GD, Patterson C (1996) Relationships of lower euteleostean fish. In: Stiassny MLJ, Parenti LR, Johnson GD (eds) Interrelationships of fish. Academic Press, San Diego

  • Kruiswijk CP, , Hermsen TT, Westphal AH, Savelkoul FJ, Steti RJM (2002). A novel functional class I cineage in Zebrafish (Danio rerio), Carp (Cyprinus carpio), and large Barbus (Barbus intermedius) showing an unusual conservation of the peptide binding domains. J Immunol 169:1936–1947

    PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Gadagkar SR (2000) Efficiency of the neighborjoining method in reconstructing deep and shallow evolutionary relationships in large phylogenies. J Mol Evol 51:544–553

    PubMed  CAS  Google Scholar 

  • Kumazawa Y, Yamaguchi M, Nishida M (1999). Mitochondrial molecular clocks and the origin of euteleostean biodiversity: familial radiation of Perciforms may have predated the Cretaceous/Tertiary boundary. In: Kato M (ed) The biology of biodiversity. Springer, Hong Kong

  • Lake LA, Moore JE (1998) Phylogenetic analysis and comparative genomics. Trends guide to Bioinformatics, Trends Supplement 1998:22–23

  • Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759

    CAS  Google Scholar 

  • Mitchell A, Mitter C, Regier JC (2000) More taxa or more characters revisited: combining data from nuclear protein-encoding genes for phylogenetic analyses of Noctuoidea (Insecta: Lepidoptera). Syst Biol 49:202–224

    Article  PubMed  CAS  Google Scholar 

  • Miya M, Nishida M (2000) Use of mitogenomic information in teleostean molecular pyhlogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. Mol Phylogenet Evol 17:437–455

    Article  PubMed  CAS  Google Scholar 

  • Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, A. Kawaguchi, K. Mabuchi, Shirai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26:121–138

    Article  PubMed  CAS  Google Scholar 

  • Mossel E, Vigoda E (2005) Phylogenetic MCMC algorithms are misleading on mixtures of trees. Science 309:2207–2209

    Article  PubMed  CAS  Google Scholar 

  • Near TJ, Sanderson MJ (2004). Assessing the quality of molecular divergence time estimates by fossil calibrations and fossil-based model selection. Phil Trans R Soc Lond B Biol Sci 359:1477–1483

    Article  Google Scholar 

  • Near TJ, Meylan PA, Shaffer HB (2005) Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. Am Nat 165:137–146

    Article  PubMed  Google Scholar 

  • Nelson J (1994) Fish of the world. Wiley, New York

    Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  PubMed  CAS  Google Scholar 

  • Renn SCP, Aubin-Horth N, Hofmann HA (2004) Biologically meaningful expression profiling across species using heterologous hybridization to a cDNA microarray. BMC Genomics 5:42

    Article  PubMed  Google Scholar 

  • Resetnikov JS (1988) Coregonid fish in recent conditions. Finnish Fish Res 9:11–16

    Google Scholar 

  • Rokas A, Carroll SB (2005) More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol Biol Evol 22:1337–1344

    Article  PubMed  CAS  Google Scholar 

  • Rokas A, William BL, King N, Carroll SB (2003) Genome scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

    Article  PubMed  CAS  Google Scholar 

  • Rokas A, Kruger D, Carroll SB (2005) Animal evolution and the molecular signature of radiations compressed in time. Science 310:1933–1938

    Article  PubMed  Google Scholar 

  • Rosen DE (1973) Interrelationships of higher teleostean fish. In: Greenwood PH, Miles RS, Patterson C (eds) Interrelationships of fish. Academic Press, London

  • Rosen DE, (1974) Phylogeny and zoogeography of salmoniform fish and relationships of Lepidogalaxias salamandroides. Bull Am Mus Nat Hist 153:265–326

    Google Scholar 

  • Rosen DE, Greenwood PH (1970) Origin of the Weberian apparatus and the relationships of the ostariophysan and gonorynchiform fish. Am Mus Novit 2428:1–25

    Google Scholar 

  • Rosen DE, Patterson C (1969) The structure and relationships of the paracanthopterygian fish. Bull Am Mus Nat Hist 141:357–474

    Google Scholar 

  • Rosenberg MS, Kumar S (2001) Incomplete taxon sampling is not a problem for phylogenetic inference. Proc Natl Acad Sci USA 98:10751–10756

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg MS, Kumar S (2003) Taxon sampling, bioinformatics, and phylogenomics. Syst Biol 52:119–124

    PubMed  Google Scholar 

  • Saitoh K, Miya M, Inoue JG, Ishiguro NB, Nishida M (2003) Mitochondrial genomics of ostariophysan fish:Perspectives on phylogeny and biogeography. J Mol Evol 56:464–472

    Article  PubMed  CAS  Google Scholar 

  • Sanderson MJ (2003) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302

    Article  PubMed  CAS  Google Scholar 

  • Santini F, Tyler JC (2003) A phylogeny of the families of fossil and extant tetraodontiform fish (Acanthomorpha, Tetraodontiformes), Upper Cretaceous to Recent. Zool J Linn Soc 139:565–617

    Article  Google Scholar 

  • Shevchuk NA, Allard MW (2001) Sources of incongruence among mammalian mitochondrial sequences: COII, COIII, and ND6 genes are main contributors. Mol Phylogenet Evol 21:43–54

    Article  PubMed  CAS  Google Scholar 

  • Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508

    Article  PubMed  Google Scholar 

  • Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247

    Article  PubMed  CAS  Google Scholar 

  • Simmons MP, Miya M (2004) Efficiently resolving the basal clades of a phylogenetic tree using Bayesian and parsimony approaches: a case study using mitogenomic data from 100 higher teleost fish. Mol Phylogenet Evol 31:351–362

    Article  PubMed  CAS  Google Scholar 

  • Steinke D, Salzburger W, Meyer A (2004) EverEST—A phylogenomic EST database approach. Phyloinformatics 6:1–4

    Google Scholar 

  • Stepien CA, Kocher TD (1997) Molecules and morphology in studies of fish evolution. In: Kocher TD, Stepien CA (eds) Molecular systematics of fish. Academic Press, San Diego

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4.10b. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Takezaki N, Figueroa F, Zaleska-Rutczynska Z, Klein J (2003) Molecular phylogeny of early vertebrates: monophyly of the Agnathans as revealed by sequences of 35 genes. Mol Biol Evol 20:287–292

    Article  PubMed  CAS  Google Scholar 

  • Takezaki N, Figueroa F, Zaleska-Rutczynska Z, Takahata N, Klein J (2004) The phylogenetic relationship of tetrapod, coelacanth, and lungfish revealed by the sequences of forty-four nuclear genes. Mol Biol Evol 21:1512–1524

    Article  PubMed  CAS  Google Scholar 

  • Taylor JS, Braasch I, Frickey T, Meyer A, van de Peer Y (2003) Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res 13:382–390

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Kobayashi N, Shin-i T, Horiike T, Tateno Y, Kohara Y, Okada N (2004) Extensive analysis of ORF sequences from two different cichlid species in Lake Victoria provides molecular evidence for a recent radiation event of the Victoria species flock identity of EST sequences between Haplochromis chilotes and Haplochromis sp. “Redtailsheller.” Gene 343:263–269

    Article  PubMed  CAS  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    PubMed  CAS  Google Scholar 

  • Wiley EO, Johnson GD, Dimmick WW (2000) The interrelationships of Acantomorph fish: a total evidence approach using molecular and morphological data. Biochem Syst Ecol 28:319–350

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support for this study came from the Deutsche Forschungsgemeinschaft (DFG) to A.M., and from the European Community, the Landesstiftung Baden-Württemberg GmbH, and the Center for Junior Research Fellows at the University of Konstanz to W.S. The authors also would like to thank Simone Hoegg, Masaki Miya, Rafael Zardoya, and two anonymous referees for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Meyer.

Additional information

[Reviewing Editor: Dr. Rafael Zardoya]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinke, D., Salzburger, W. & Meyer, A. Novel Relationships Among Ten Fish Model Species Revealed Based on a Phylogenomic Analysis Using ESTs. J Mol Evol 62, 772–784 (2006). https://doi.org/10.1007/s00239-005-0170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0170-8

Keywords

Navigation