Skip to main content
Log in

Selection for Chromosome Architecture in Bacteria

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Bacterial chromosomes are immense polymers whose faithful replication and segregation are crucial to cell survival. The ability of proteins such as FtsK to move unidirectionally toward the replication terminus, and direct DNA translocation into the appropriate daughter cell during cell division, requires that bacterial genomes maintain an architecture for the orderly replication and segregation of chromosomes. We suggest that proteins that locate the replication terminus exploit strand-biased sequences that are overrepresented on one DNA strand, and that selection increases with decreased distance to the replication terminus. We report a generalized method for detecting these architecture imparting sequences (AIMS) and have identified AIMS in nearly all bacterial genomes. Their increased abundance on leading strands and decreased abundance on lagging strands toward replication termini are not the result of changes in mutational bias; rather, they reflect a gradient of long-term positive selection for AIMS. The maintenance of the pattern of AIMS across the genomes of related bacteria independent of their positions within individual genes suggests a well-conserved role in genome biology. The stable gradient of AIMS abundance from replication origin to terminus suggests that the replicore acts as a target of selection, where selection for chromosome architecture results in the maintenance of gene order and in the lack of high-frequency DNA inversion within replicores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Altschul SF (1991) Amino acid substitutions matrices from an information theoretic perspective. J Mol Biol 219:555–565

    Article  CAS  PubMed  Google Scholar 

  • Andersen PA, Griffiths AA, Duggin IG, Wake RG (2000) Functional specificity of the replication fork-arrest complexes of Bacillus subtilis and Escherichia coli: significant specificity for Tus-Ter functioning in E. coli. Mol Microbiol 36:1327–1335

    Article  CAS  PubMed  Google Scholar 

  • Andersson JO, Andersson SG (1999a) Genome degradation is an ongoing process in Rickettsia. Mol Biol Evol 16:1178–1191

    CAS  Google Scholar 

  • Andersson JO, Andersson SG (1999b) Insights into the evolutionary process of genome degradation. Curr Opin Genet Dev 9:664–671

    Article  CAS  Google Scholar 

  • Bigot S, Corre J, Louarn JM, Cornet F, Barre FX (2004) FtsK activities in Xer recombination, DNA mobilization and cell division involve overlapping and separate domains of the protein. Mol Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Bigot S, Saleh OA, Lesterlin C, Pages C, El Karoui M, Dennis C, Grigoriev M, Allemand JF, Barre FX, Cornet F (2005) KOPS: DNA motifs that control E coli chromosome segregation by orienting the FtsK translocase. EMBO J 24:3770–3780

    Article  CAS  PubMed  Google Scholar 

  • Blakely G, Colloms S, May G, Burke M, Sherratt D (1991) Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol 3:789–798

    CAS  PubMed  Google Scholar 

  • Capiaux H, Cornet F, Corre J, Guijo M, Perals K, Rebollo JE, Louarn J (2001) Polarization of the Escherichia coli chromosome. A view from the terminus. Biochimie 83:161–170

    Article  CAS  PubMed  Google Scholar 

  • Clerget M (1991) Site-specific recombination promoted by a short DNA segment of plasmid R1 and by a homologous segment in the terminus region of the Escherichia coli chromosome. New Biol 3:780–788

    CAS  PubMed  Google Scholar 

  • Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honore N, Garnier T, Churcher C, Harris D, Mungall K, Basham D, Brown D, Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroix C, Maclean J, Moule S, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM, Rutter S, Seeger K, Simon S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Taylor K, Whitehead S, Woodward JR, Barrell BG (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Cornet F, Louarn J, Patte J, Louarn JM (1996) Restriction of the activity of the recombination site dif to a small zone of the Escherichia coli chromosome. Genes Dev 10:1152–1161

    CAS  PubMed  Google Scholar 

  • Corre J, Louarn JM (2002) Evidence from terminal recombination gradients that FtsK uses replichore polarity to control chromosome terminus positioning at division in Escherichia coli. J Bacteriol 184:3801–3807

    Article  CAS  PubMed  Google Scholar 

  • Corre J, Louarn JM (2005) Extent of the activity domain and possible roles of FtsK in the Escherichia coli chromosome terminus. Mol Microbiol 56:1539–1548

    Article  CAS  PubMed  Google Scholar 

  • Corre J, Patte J, Louarn JM (2000) Prophage lambda induces terminal recombination in Escherichia coli by inhibiting chromosome dimer resolution. An orientation-dependent cis- effect lending support to bipolarization of the terminus. Genetics 154:39–48

    CAS  PubMed  Google Scholar 

  • Cunningham EL, Berger JM (2005) Unraveling the early steps of prokaryotic replication. Curr Opin Struct Biol 15:68–76

    Article  CAS  PubMed  Google Scholar 

  • Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  CAS  PubMed  Google Scholar 

  • Daubin V, Perrière G (2003) G+C3 structuring along the genome: a common feature in prokaryotes. Mol Biol Evol 20:471–483

    Article  CAS  PubMed  Google Scholar 

  • Deng S, Stein RA, Higgins NP (2004) Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome. Proc Natl Acad Sci USA 101:3398–3403

    Article  CAS  PubMed  Google Scholar 

  • Dworkin J, Losick R (2001) Differential gene expression governed by chromosomal spatial asymmetry. Cell 107:339–346

    Article  CAS  PubMed  Google Scholar 

  • Eggleston AK, West SC (1997) Recombination initiation: Easy as A, B, C, D chi? Curr Biol 7:R745–R749

    Article  CAS  PubMed  Google Scholar 

  • Eisen JA, Heidelberg JF, White O, Salzberg SL (2000) Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol 1:1–11

    Article  Google Scholar 

  • El Karoui M, Biaudet V, Schbath S, Gruss A (1999) Characteristics of Chi distribution on different bacterial genomes. Res Microbiol 150:579–587

    Article  CAS  PubMed  Google Scholar 

  • Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B (2005) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3:e121

    Article  PubMed  CAS  Google Scholar 

  • Gitai Z, Thanbichler M, Shapiro L (2005) The choreographed dynamics of bacterial chromosomes. Trends Microbiol 13:221–228

    Article  CAS  PubMed  Google Scholar 

  • Higgins NP, Yang X, Fu Q, Roth JR (1996) Surveying a supercoil domain by using the gamma delta resolution system in Salmonella typhimurium. J Bacteriol 178:2825–2835

    CAS  PubMed  Google Scholar 

  • Holmes VF, Cozzarelli NR (2000) Closing the ring: links between SMC proteins and chromosome partitioning, condensation, and supercoiling. Proc Natl Acad Sci USA 97:1322–1324

    Article  CAS  PubMed  Google Scholar 

  • Ip SC, Bregu M, Barre FX, Sherratt DJ (2003) Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination. EMBO J 22:6399–6407

    Article  CAS  PubMed  Google Scholar 

  • Jaccard P (1912) The distribuition of flora in the alpine zone. New Phytol 11:37–50

    Article  Google Scholar 

  • Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465

    CAS  PubMed  Google Scholar 

  • Kuzminov A (1995) Collapse and repair of replication forks in Escherichia coli. Mol Microbiol 16:373–384

    CAS  PubMed  Google Scholar 

  • Lau IF, Filipe SR, Soballe B, Okstad OA, Barre FX, Sherratt DJ (2003) Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol Microbiol 49:731–743

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JG (2001) Catalyzing bacterial speciation: correlating lateral transfer with genetic headroom. Syst Biol 50:479–496

    CAS  PubMed  Google Scholar 

  • Lawrence JG, Hendrickson H (2003) Lateral gene transfer: When will adolescence end? Mol Microbiol 50:739–749

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JG, Hendrickson H (2004) Chromosome structure and constraints on lateral gene transfer. Dev Genet 2004:319–336

    Google Scholar 

  • Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JG, Roth JR (1999) Genomic flux: genome evolution by gene loss and acquisition. In: Charlebois RL (eds). Organization of the prokaryotic genome. ASM Press, Washington, DC, pp 263–289

    Google Scholar 

  • Lawrence JG, Hendrix RW, Casjens S (2001) Where are the pseudogenes in bacterial genomes? Trends Microbiol 9:535–540

    Article  CAS  PubMed  Google Scholar 

  • Levy O, Ptacin JL, Pease PJ, Gore J, Eisen MB, Bustamante C, Cozzarelli NR (2005) Identification of oligonucleotide sequences that direct the movement of the Escherichia coli FtsK translocase. Proc Natl Acad Sci USA 102:17618–17623

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Youngren B, Sergueev K, Austin S (2003) Segregation of the Escherichia coli chromosome terminus. Mol Microbiol 50:825–834

    Article  CAS  PubMed  Google Scholar 

  • Liu SL, Sanderson KE (1995a) The chromosome of Salmonella paratyphi A is inverted by recombination between rrnH and rrnG. J Bacteriol 177:6585–6592

    CAS  Google Scholar 

  • Liu SL, Sanderson KE (1995b) Rearrangements in the genome of the bacterium Salmonella typhi. Proc Natl Acad Sci USA 92:1018–1022

    CAS  Google Scholar 

  • Liu SL, Sanderson KE (1996) Highly plastic chromosomal organization in Salmonella typhi. Proc Natl Acad Sci USA 93:10303–10308

    Article  CAS  PubMed  Google Scholar 

  • Lobry JR (1996) Asymetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13:660–665

    CAS  PubMed  Google Scholar 

  • Lobry JR, Louarn JM (2003) Polarisation of prokaryotic chromosomes. Curr Opin Microbiol 6:101–108

    Article  CAS  PubMed  Google Scholar 

  • Mackiewicz P, Mackiewicz D, Kowalczuk M, Cebrat S (2001) Flip-flop around the origin and terminus of replication in prokaryotic genomes. Genome Biol 2:INTERACTIONS1004

    Article  CAS  PubMed  Google Scholar 

  • Mackiewicz P, Zakrzewska-Czerwinska J, Zawilak A, Dudek MR, Cebrat S (2004) Where does bacterial replication start? Rules for predicting the oriC region. Nucleic Acids Res 32:3781–3791

    Article  CAS  PubMed  Google Scholar 

  • Mahan MJ, Roth JR (1991) Ability of a bacterial chromosome segment to invert is dictated by included material rather than flanking sequence. Genetics 129:1021–1032

    CAS  PubMed  Google Scholar 

  • Massey TH, Aussel L, Barre FX, Sherratt DJ (2004) Asymmetric activation of Xer site-specific recombination by FtsK. EMBO Rep 5:399–404

    Article  CAS  PubMed  Google Scholar 

  • Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. Trends Genet 17:589–596

    Article  CAS  PubMed  Google Scholar 

  • Myers RS, Stahl FW (1994) Chi and the RecBC D enzyme of Escherichia coli. Annu Rev Genet 28:49–70

    CAS  PubMed  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  CAS  PubMed  Google Scholar 

  • Niki H, Yamaichi Y, Hiraga S (2000) Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev 14:212–223

    CAS  PubMed  Google Scholar 

  • Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MT, Churcher CM, Bentley SD, Mungall KL, Cerdeno-Tarraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O’Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell BG, Maskell DJ (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40

    Article  PubMed  Google Scholar 

  • Pease PJ, Levy O, Cost GJ, Gore J, Ptacin JL, Sherratt D, Bustamante C, Cozzarelli NR (2005) Sequence-directed DNA translocation by purified FtsK. Science 307:586–590

    Article  CAS  PubMed  Google Scholar 

  • Pérals K, Cornet F, Merlet Y, Delon I, Louarn JM (2000) Functional polarization of the Escherichia coli chromosome terminus: the dif site acts in chromosome dimer resolution only when located between long stretches of opposite polarity. Mol Microbiol 36:33–43

    Article  PubMed  Google Scholar 

  • Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28:1397–1406

    Article  CAS  PubMed  Google Scholar 

  • Rocha EP (2004) The replication-related organization of bacterial genomes. Microbiology 150:1609–1627

    Article  CAS  PubMed  Google Scholar 

  • Rocha EP, Danchin A (2003a) Essentiality, not expressiveness, drives gene-strand bias in bacteria. Nat Genet 34:377–378

    Article  CAS  Google Scholar 

  • Rocha EP, Danchin A (2003b) Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Res 31:6570–6577

    Article  CAS  Google Scholar 

  • Salzberg SL, Salzberg AJ, Kerlavage AR, Tomb JF (1998) Skewed oligomers and origins of replication. Gene 217:57–67

    Article  CAS  PubMed  Google Scholar 

  • Sanderson KE, Liu SL (1998) Chromosomal rearrangements in enteric bacteria. Electrophoresis 19:569–572

    Article  CAS  PubMed  Google Scholar 

  • Segall A, Mahan MJ, Roth JR (1988) Rearrangement of the bacterial chromosome: forbidden inversions. Science 241:1314–1318

    CAS  PubMed  Google Scholar 

  • Stein RA, Deng S, Higgins NP (2005) Measuring chromosome dynamics on different time scales using resolvases with varying half-lives. Mol Microbiol 56:1049–1061

    Article  CAS  PubMed  Google Scholar 

  • Suyama M, Bork P (2001) Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet 17:10–13

    Article  CAS  PubMed  Google Scholar 

  • Teleman AA, Graumann PL, Lin DC, Grossman AD, Losick R (1998) Chromosome arrangement within a bacterium. Curr Biol 8:1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Tillier ER, Collins RA (2000) Genome rearrangement by replication-directed translocation. Nat Genet 26:195–197

    Article  CAS  PubMed  Google Scholar 

  • Uno R, Nakayama Y, Arakawa K, Tomita M (2000) The orientation bias of Chi sequences is a general tendency of G-rich oligomers. Gene 259:207–215

    Article  CAS  PubMed  Google Scholar 

  • Viollier PH, Shapiro L (2004) Spatial complexity of mechanisms controlling a bacterial cell cycle. Curr Opin Microbiol 7:572–578

    Article  CAS  PubMed  Google Scholar 

  • Viollier PH, Thanbichler M, McGrath PT, West L, Meewan M, McAdams HH, Shapiro L (2004) Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci USA 101:9257–9262

    Article  CAS  PubMed  Google Scholar 

  • Wu LJ (2004) Structure and segregation of the bacterial nucleoid. Curr Opin Genet Dev 14:126–132

    Article  CAS  PubMed  Google Scholar 

  • Wu LJ, Errington J (1998) Use of asymmetric cell division and spoIIIE mutants to probe chromosome orientation and organization in Bacillus subtilis. Mol Microbiol 27:777–786

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Zhang CT (2003) Multiple replication origins of the archaeon Halobacterium species NRC-1. Biochem Biophys Res Commun 302:728–734

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Zhang CT (2005) Identification of replication origins in archaeal genomes based on the Z-curve method. Archaea 1:335–346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant MCB-0217278 from the National Science Foundation to J.G.L. and a fellowship from the Pennsylvania Space Consortium to H.H. We thank Thomas Murphy VII for assistance with automated global pairwise sequence comparisons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey G. Lawrence.

Additional information

[Reviewing Editor: Dr. Martin Kreitman]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendrickson, H., Lawrence, J.G. Selection for Chromosome Architecture in Bacteria. J Mol Evol 62, 615–629 (2006). https://doi.org/10.1007/s00239-005-0192-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0192-2

Keywords

Navigation