Skip to main content
Log in

The Relationship Between the Rate of Molecular Evolution and the Rate of Genome Rearrangement in Animal Mitochondrial Genomes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Evolution of mitochondrial genes is far from clock-like. The substitution rate varies considerably between species, and there are many species that have a significantly increased rate with respect to their close relatives. There is also considerable variation among species in the rate of gene order rearrangement. Using a set of 55 complete arthropod mitochondrial genomes, we estimate the evolutionary distance from the common ancestor to each species using protein sequences, tRNA sequences, and breakpoint distances (a measure of the degree of genome rearrangement). All these distance measures are correlated. We use relative rate tests to compare pairs of related species in several animal phyla. In the majority of cases, the species with the more highly rearranged genome also has a significantly higher rate of sequence evolution. Species with higher amino acid substitution rates in mitochondria also have more variable amino acid composition in response to mutation pressure. We discuss the possible causes of variation in rates of sequence evolution and gene rearrangement among species and the possible reasons for the observed correlation between the two rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi J, Hasegawa M (1996) A model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol 42:459–468

    Article  PubMed  CAS  Google Scholar 

  • Bielawski JP, Gold JR (2002) Mutation patterns of mitochondrial H- and L-strand DNA in closely related cyprinid fishes. Genetics 161:1589–1597

    PubMed  CAS  Google Scholar 

  • Blanchette M, Kunisawa T, Sankoff D (1999) Gene order breakpoint evidence in animal mitochondrial phylogeny. J Mol Evol 49:193–203

    Article  PubMed  CAS  Google Scholar 

  • Bogenhagen DF, Clayton DA (2003) The mitochondrial DNA replication bubble has not burst. Trends Biochem Sci 28:357–360

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker M, Yang MY, Yasukawa T, Reyes A, Jacobs HT, Huberman JA, Holt IJ (2003) Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone. J Biol Chem 278:50961–50960

    Article  PubMed  CAS  Google Scholar 

  • Boore JL (2000) The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deuterostome animals. In: Sankoff D, Nadeau JH (eds) Comparative genomics. Kluwer Academic, Dordrecht, pp 133–147

    Google Scholar 

  • Boore JL, Staton JL (2002) The mitochondrial genome of the Sipunculid Phascolopsis gouldii supports its association with Annelida rather than Mollusca. Mol Biol Evol 19:127–137

    PubMed  CAS  Google Scholar 

  • Boore JL, Lavrov DV, Brown WM (1998) Gene translocation links insects and crustaceans. Nature 392:667–668

    Article  PubMed  CAS  Google Scholar 

  • Bourque G, Pevzner PA (2002) Genome-scale evolution: reconstructing gene orders in ancestral species. Genome Res 12:26–36

    PubMed  CAS  Google Scholar 

  • Castro LR, Dowton M (2005) The position of the Hymenoptera within the Holometabola is inferred from the mitochondrial genome of Perga condei (Hymenoptera:Symphyta:Pergidae). Mol Phylogenet Evol 34:469–470

    Article  PubMed  CAS  Google Scholar 

  • Cosner ME, Jansen RK, Moret BME, Raubeson LA, Wang LS, Wanrnow T, Wyman S (2000) An empirical comparison of phylogenetic methods on chloroplast gene order data in Campanulaceae. In: Sankoff D, Nadeau JH (eds) Comparative genomics. Kluwer Academic, Dordrecht, pp 99–121

    Google Scholar 

  • Del Bo R, Bordoni A, Sciacco M, Di Fonzo A, Galbiati S, Crimi M, Bresolin N, Comi GP (2003) Remarkable infidelity of polymerase gamma A associated with mutations in POLG1 exonuclease domain. Neurology 61:903–908

    PubMed  CAS  Google Scholar 

  • Delsuc F, Phillips MJ, Penny D. (2003) Comment on “Hexapod Origins: Monophyletic or Paraphyletic?” Science 301:1482d

    Article  Google Scholar 

  • Dowton M (2004) Assessing the relative rate of (mitochondrial) genomic change. Genetics 167:1027–1030

    Article  PubMed  CAS  Google Scholar 

  • Dowton M, Campbell NJH (2001) Intramitochondrial recombination—Is it why some mitochondrial genes sleep around. Trends Ecol Evol 16:269–271

    Article  PubMed  Google Scholar 

  • Dowton M, Castro LR, Campbell SL, Bargon SD, Austin AD (2003) Frequent mitochondrial gene rearrangements at the hymenopteran nad3−nad5 junction. J Mol Evol 56:517–526

    Article  PubMed  CAS  Google Scholar 

  • Faith JJ, Pollock DD (2003) Likelihood analysis of asymmetrical mutation bias gradients in vertebrate mitochondrial genomes. Genetics 165:735–745

    PubMed  CAS  Google Scholar 

  • Fernandez-Silva P, Enriquez JA, Montoya J (2003) Replication and transcription of mammalian mitochondrial DNA. Exp Physiol 88:41–56

    Article  PubMed  CAS  Google Scholar 

  • Gillooly JF, Allen AP, West GB, Brown JH (2005) The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proc Natl Acad Sci USA 102:140–145

    Article  PubMed  CAS  Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161

    Article  PubMed  CAS  Google Scholar 

  • Halanych KM (2004) The new view of animal phylogeny. Annu Rev Ecol Evol Syst 35:229–256

    Article  Google Scholar 

  • Higgs PG, Jameson D, Jow H, Rattray M (2003) The evolution of tRNA-Leucine genes in animal mitochondrial genomes. J Mol Evol 57:435–445

    Article  PubMed  CAS  Google Scholar 

  • Jameson D, Gibson AP, Hudelot C, Higgs PG (2003) OGRe: a relational database for comparative analysis of mitochondrial genomes. Nucleic Acids Res 31:202–206

    Article  PubMed  Google Scholar 

  • Kaguni LS (2004) DNA polymerase γ, the mitochondrial replicase. Annu Rev Biochem 73:293–320

    Article  PubMed  CAS  Google Scholar 

  • Kajander OA, Rovio AT, Majamaa K, Poulton J, Spelbrink JN, Holt IJ, Karhunen PJ, Jacobs HT (2000) Human mtDNA sublimons resemble rearranged mitochondrial genomes found in pathological states. Hum Mol Genet 9:2821–2835

    Article  PubMed  CAS  Google Scholar 

  • Knudsen B, Kohn AB, Nahir B, McFadden CS, Moroz LL (2006) Complete DNA sequence of the mitochondrial genome of the sea-slug, Aplysia californica:Conservation of the gene order in Euthyneura. Mol Phylogenet Evol 38:459–460

    Article  PubMed  CAS  Google Scholar 

  • Korhonen JA, Pham XH, Pellegrini M, Falkenberg M (2004) Reconstruction of a minimal mtDNA replisome in vitro. EMBO J 23:2423–2420

    Article  CAS  Google Scholar 

  • Krishnan NM, Seligmann H, Raina SZ, Pollock DD (2004) Detecting gradients of asymmetry in site-specific substitutions in mitochondrial genomes. DNA Cell Biol 23:707–714

    Article  PubMed  CAS  Google Scholar 

  • Larget B, Simon DL, Kadane JB (2002) Bayesian phylogenetic inference from animal mitochondrial genome arrangements. J Roy Stat Soc B 64:681–693

    Article  Google Scholar 

  • Lavrov DV, Boore JL, Brown WM (2002) Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and non-random loss. Mol Biol Evol 19:163–160

    Google Scholar 

  • Lavrov DV, Brown WM, Boore JL (2004) Phylogenetic position of the Pentastomida and (pan) crustacean relationships. Proc Roy Soc Lond B 271:537–544

    Article  Google Scholar 

  • Li WH (1993) So what about the molecular clock hypothesis? Curr Opin Genet Dev 3:896–901

    Article  PubMed  CAS  Google Scholar 

  • Lunt DH, Hyman BC (1997) Animal mitochondrial DNA recombination. Nature 387:247

    Article  PubMed  CAS  Google Scholar 

  • Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191

    Article  PubMed  CAS  Google Scholar 

  • Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091

    Article  PubMed  CAS  Google Scholar 

  • Mooers AO, Harvey PH (1994) Metabolic rate, generation time, and the rate of molecular evolution in birds. Mol Phylogenet Evol 3:344–350

    Article  PubMed  CAS  Google Scholar 

  • Moret BME, Siepel AC, Tang J, Liu T (2002) Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene order data. Lect Notes Comp Sci 2452:521–536

    Article  Google Scholar 

  • Morrison CL, Harvey AW, Lavery S, Tieu K, Huang Y, Cunningham CW (2002) Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form. Proc R Soc Lond B 269:345–350

    Article  CAS  Google Scholar 

  • Mueller RL, Boore JL (2005) Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. Mol Biol Evol 22:2104–2112

    Article  PubMed  CAS  Google Scholar 

  • Nardi F, Spinsanti G, Boore JL, Carapelli A, Dallai R, Frati F (2003) Hexapod origins: Monophyletic or paraphyletic? Science 299:1887–1880 (see also Science 301:1482e)

    Article  PubMed  CAS  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T–Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  PubMed  CAS  Google Scholar 

  • Ojala D, Montoya A, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    Article  PubMed  CAS  Google Scholar 

  • Pisani D (2004) Identifying and removing fast-evolving sites using compatibility analysis: an example from the Arthropoda. Syst Biol 53:978–980

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50:580–601

    Article  PubMed  CAS  Google Scholar 

  • Raina SZ, Faith JJ, Dusotell TR, Seligmann H, Stewart CB, Pollock DD. (2005) Evolution of base-substitution gradients in primate mitochondrial genomes. Genome Res 15:665–673

    Article  PubMed  CAS  Google Scholar 

  • Regier JC, Shultz JW (1997) Molecular phylogeny of the major arthorpod groups indicates polyphyly of the crustaceans and a new hypothesis for the origin of hexapods. Mol Biol Evol 14:909–913

    Google Scholar 

  • Regier JC, Shultz JW, Kambic RE (2005) Pancrustacean phylogeny:hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc Roy Soc Lond B 272:395–401

    Article  Google Scholar 

  • Reyes A, Gissi C, Pesole G, Saccone C (1998) Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15:957–966

    PubMed  CAS  Google Scholar 

  • Richter S (2002) The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Organisms Diversity Evol 2:217–237

    Article  Google Scholar 

  • Samuels DC, Schon EA, Chinnery PF (2004) Two direct repeats cause most human mtDNA deletions. Trends Genet 20:393–398

    Article  PubMed  CAS  Google Scholar 

  • Sankoff D, Deneault M, Bryant D, Lemieux C, Turmel M (2000a) Chloroplast gene order and the divergence of plants and algae, from the normalized number of induced breakpoints. In: Sankoff D, Nadeau JH (eds) Comparative genomics. Kluwer Academic, Dordrecht, pp 89–98

    Google Scholar 

  • Sankoff D, Bryant D, Deneault M, Lang BF, Burger G (2000b) Early eukaryote evolution based on mitochondrial gene order breakpoints. J Comp Biol 7:521–535

    Article  CAS  Google Scholar 

  • Scouras A, Smith MJ (2001) A novel gene order in the crinoid echinoderm Florometra serratissima. Mol Biol Evol 18:61–73

    PubMed  CAS  Google Scholar 

  • Segawa RD, Aotsuka T (2005) The mitochondrial genome of the Japanese freshwater crab, Geothelphusa (Crustacea:Brachyura):evidence for its evolution via gene duplication. Gene 355:28–30

    Article  PubMed  CAS  Google Scholar 

  • Serb JM, Lydeard C (2003) Complete mtDNA sequence of the North American freshwater mussel Lampsilis ornata (Unionidae): an examination of the evolution and phylogenetic utility of mitochondrial genome organization in Bivalvia (Mollusca). Mol Biol Evol 20:1854–1866

    Article  PubMed  CAS  Google Scholar 

  • Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in verebrates. Annu Rev Biochem 66:409–435

    Article  PubMed  CAS  Google Scholar 

  • Shao R, Dowton M, Murrell A, Barker SC (2003) Rates of genome rearrangement and nucleotide substitution are correlated in the mitochondrial genomes of insects. Mol Biol Evol 20:1612–1610

    Article  PubMed  CAS  Google Scholar 

  • Shultz JW, Regier JC (2000) Phylogenetic analysis of arthropods using two nuclear protein-encoding genes supports a crustacean + hexapod clade. Proc R Soc Lond B 267:1011–1010

    Article  CAS  Google Scholar 

  • Spears T, Abele LG (2000) Branchiopod monophyly and interordinal phylogeny inferred from 18S ribosomal DNA. J Crust Biol 20:1–24

    Article  Google Scholar 

  • Spelbrink JN, Toivinen JM, Hakkaart GAJ, Kurkela JM, Cooper HM, Lehtinen SK, Lecrenier N, Back JP, Speijer D, Foury F, Jacobs HT (2000) In vivo functional analysis of the human mitochondrial DNA polymerase POLG expressed in cultured human cells. J Biol Chem 275:24818–24828

    Article  PubMed  CAS  Google Scholar 

  • Stanton DJ, Daehler LL, Moritz CC, Brown WM (1994) Sequences with potential to form stem-and-loop structures are associated with coding region duplications in animal mitochondrial DNA. Genetics 137:233–241

    PubMed  CAS  Google Scholar 

  • Tajima F (1993) Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135:599–607

    PubMed  CAS  Google Scholar 

  • Tao N, Richardson R, Bruno W, Kuiken C (2005) FindModel; http://hcv.lanl.gov/content/hcv–db/findmodel/findmodel.html

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tracy RL, Stern DB (1995) Mitochondrial transcription initiation: promoter structures and RNA polymerases. Curr Genet 28:205–216

    Article  PubMed  CAS  Google Scholar 

  • Urbina D, Tang B, Higgs PG (2006) The response of amino acid frequencies to directional mutational pressure in mitochondrial genome sequences is related to the physical properties of the amino acids and to the structure of the genetic code. J Mol Evol 62:340–361

    Article  PubMed  CAS  Google Scholar 

  • Van Goethem G, Dermaut B, Löfgren A, Martin JJ, Van Broeckhoven C (2001) Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nature Genet 28:211–212

    Article  PubMed  CAS  Google Scholar 

  • Wanrooij S, Luoma P, Van Goethem G, Van Broeckhoven C, Suomalainen A, Spelbrink JN (2004) Twinkle and POLG defects enhance age-dependent accumulation of mutations in the control region of mtDNA. Nucleic Acids Res 32:3053–3064

    Article  PubMed  CAS  Google Scholar 

  • Wheeler WC, Whiting M, Wheeler QD, Carpenter JM (2001) The phylogeny of the extant hexapod orders. Cladistics 17:113–160 (see also erratum in Cladistics 17:403)

    Article  Google Scholar 

  • Wilson K, Cahill V, Ballment E, Benzie J (2000) The complete sequence of the mitochondrial genome of the crustacean Penaeus monodon: Are malacostracan crustaceans more closely related to insects than to branchiopods? Mol Biol Evol 17:863–874

    PubMed  CAS  Google Scholar 

  • Yang MY, Bowmaker M, Reyes A, Vergani L, Angeli P, Gringeri E, Jacobs HT, Holt IJ (2002) Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 111:495–505

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2002) Phylogenetic Analysis Using Maximum Likelihood (PAML), version 314; http://abacus.gene.ucl.ac.uk/software/paml.html

  • Zeviani M, Spinazzola A, Carelli V (2003) Nuclear genes in mitochondrial disorders. Curr Opin Genet Dev 13:262–270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Canada Research Chairs, NSERC (Canada), and BBSRC (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Higgs.

Additional information

[Reviewing Editor: Dr. David Pollock]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Jameson, D., Tang, B. et al. The Relationship Between the Rate of Molecular Evolution and the Rate of Genome Rearrangement in Animal Mitochondrial Genomes. J Mol Evol 63, 375–392 (2006). https://doi.org/10.1007/s00239-005-0246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0246-5

Keywords

Navigation