Skip to main content
Log in

Comprehensive Analysis of Animal TALE Homeobox Genes: New Conserved Motifs and Cases of Accelerated Evolution

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

TALE homeodomain proteins are an ancient subgroup within the group of homeodomain transcription factors that play important roles in animal, plant, and fungal development. We have extracted the full complement of TALE superclass homeobox genes from the genome projects of seven protostomes, seven deuterostomes, and Nematostella. This was supplemented with TALE homeobox genes from additional species and phylogenetic analyses were carried out with 276 sequences. We found 20 homeobox genes and 4 pseudogenes in humans, 21 genes in mouse, 8 genes in Drosophila, and 5 genes plus one truncated gene in Caenorhabditis elegans. Apart from the previously identified TALE classes MEIS, PBC, IRO, and TGIF, a novel class is identified, termed MOHAWK (MKX). Further, we show that the MEIS class can be divided into two families, PREP and MEIS. Prep genes have previously only been described in vertebrates but are lacking in Drosophila. Here we identify orthologues in other insect taxa as well as in the cnidarian Nematostella. In C. elegans, a divergent Prep protein has lost the homeodomain. Full-length multiple sequence alignment of the protostome and deuterostome sequences allowed us to identify several novel conserved motifs within the MKX, TGIF, and MEIS classes. Phylogenetic analyses revealed fast-evolving PBC class genes; in particular, some X-linked PBC genes in nematodes are subject to rapid evolution. In addition, several instances of gene loss were identified. In conclusion, our comprehensive analysis provides a defining framework for the classification of animal TALE homeobox genes and the understanding of their evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aboobaker AA, Blaxter ML (2003) Hox gene loss during dynamic evolution of the nematode cluster. Curr Biol 13:37–40

    Article  PubMed  CAS  Google Scholar 

  • Abu-Shaar M, Ryoo HD, Mann RS (1999) Control of the nuclear localization of Extradenticle by competing nuclear import and export signals. Genes Dev 13:935–945

    PubMed  CAS  Google Scholar 

  • Adams MD, Celniker SE, Holt RA, et al. (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–95

    Article  PubMed  Google Scholar 

  • Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anderson DM, Arredondo J, Hahn K, Valente G, Martin JF, Wilson-Rawls J, Rawls A (2006) Mohawk is a novel homeobox gene expressed in the developing mouse embryo. Dev Dyn 235:792–801

    Article  PubMed  CAS  Google Scholar 

  • Belloni E, Martucciello G, Verderio D, Ponti E, Seri M, Jasonni V, Torre M, Ferrari M, Tsui LC, Scherer SW (2000) Involvement of the HLXB9 homeobox gene in Currarino syndrome. Am J Hum Genet 66:312–319

    Article  PubMed  CAS  Google Scholar 

  • Berthelsen J, Zappavigna V, Mavilio F, Blasi F (1998) Prep1, a novel functional partner of Pbx proteins. EMBO J 17:1423–1433

    Article  PubMed  CAS  Google Scholar 

  • Bertolino E, Reimund B, Wildt-Perinic D, Clerc RG (1995) A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem 270:31178–31188

    Article  PubMed  CAS  Google Scholar 

  • Bielawski JP, Yang Z (2003) Maximum likelihood methods for detecting adaptive evolution after gene duplication. J Struct Funct Genomics 3:201–212

    Article  PubMed  CAS  Google Scholar 

  • Bürglin TR (1995) The evolution of homeobox genes. In: Arai R, Kato M, Doi Y (eds) Biodiversity and evolution. National Science Museum Foundation, Tokyo, pp 291–336

    Google Scholar 

  • Bürglin TR (1997) Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res 25:4173–4180

    Article  PubMed  Google Scholar 

  • Bürglin TR (1998a) The PBC domain contains a MEINOX domain: Coevolution of Hox and TALE homeobox genes? Dev Genes Evol 208:113–116

    Article  PubMed  Google Scholar 

  • Bürglin TR (1998b) PPCMatrix: a PowerPC dotmatrix program to compare large genomic sequences against protein sequences. Bioinformatics 14:751–752

    PubMed  Google Scholar 

  • Bürglin TR, (2005) Homeodomain proteins. In: Meyers RA (ed) Encyclopedia of molecular cell biology and molecular medicine. Wiley-VCH Verlag, Weinheim, pp 179–222

    Google Scholar 

  • Bürglin TR, Cassata G (2002) Loss and gain of domains during evolution of cut superclass homeobox genes. Int J Dev Biol 46:115–123

    PubMed  Google Scholar 

  • Bürglin TR, Ruvkun G (1992) New motif in PBX genes. Nature Genet 1:319–320

    Article  PubMed  Google Scholar 

  • Chourrout D, Delsuc F, Chourrout P, Edvardsen RB, Rentzsch F, Renfer E, Jensen MF, Zhu B, de Jong P, Steele RE, Technau U (2006) Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature 442:684–687

    Article  PubMed  CAS  Google Scholar 

  • Consortium IHGS (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  Google Scholar 

  • Copley RR, Aloy P, Russell RB, Telford MJ (2004) Systematic searches for molecular synapomorphies in model metazoan genomes give some support for Ecdysozoa after accounting for the idiosyncrasies of Caenorhabditis elegans. Evol Dev 6:164–169

    Article  PubMed  CAS  Google Scholar 

  • De Ley P (2006) A quick tour of nematode diversity and the backbone of nematode phylogeny. In: Community TCeR (ed) WormBook; http://www.wormbook.org

  • Dildrop R, R¸ther U (2004) Organization of Iroquois genes in fish. Dev Genes Evol 214:267–276

    Article  PubMed  CAS  Google Scholar 

  • Duboule D (1994) Guidebook to the homeobox genes. Oxford University Press, Oxford

    Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed  Google Scholar 

  • Feijóo CG, Manzanares M, de la Calle-Mustienes E, Gómez-Skarmeta JL, Allende ML (2004) The Irx gene family in zebrafish: genomic structure, evolution and initial characterization of irx5b. Dev Genes Evol 214:277–284

    Article  PubMed  Google Scholar 

  • Flegel WA, Singson AW, Margolis JS, Bang AG, Posakony JW, Murre C (1993) Dpbx, a new homeobox gene closely related to the human proto-oncogene pbx1. Molecular structure and developmental expression. Mech Dev 41:155–161

    Article  PubMed  CAS  Google Scholar 

  • Fognani C, Kilstrup-Nielsen C, Berthelsen J, Ferretti E, Zappavigna V, Blasi F (2002) Characterization of PREP2, a paralog of PREP1, which defines a novel sub-family of the MEINOX TALE homeodomain transcription factors. Nucleic Acids Res 30:2043–2051

    Article  PubMed  CAS  Google Scholar 

  • Fu SW, Schwartz A, Stevenson H, Pinzone JJ, Davenport GJ, Orenstein JM, Gutierrez P, Simmens SJ, Abraham J, Poola I, Stephan DA, Berg PE (2003) Correlation of expression of BP1, a homeobox gene, with estrogen receptor status in breast cancer. Breast Cancer Res 5:R82–R87

    Article  PubMed  CAS  Google Scholar 

  • Geerts D, Schilderink N, Jorritsma G, Versteeg R (2003) The role of the MEIS homeobox genes in neuroblastoma. Cancer Lett 197:87–92

    Article  PubMed  CAS  Google Scholar 

  • Gehring WJ, Affolter M, B¸rglin TR (1994) Homeodomain proteins. Annu Rev Biochem 63:487–526

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Skarmeta J-L, Diez del Corral R, de la Calle-Mustienes E, FerrÈs-MarcÛ D, Modolell J (1996) araucan and caupolican, two members of the novel Iroquois complex, encode homeoproteins that control proneural and vein-forming genes. Cell 85:95–105

    Article  PubMed  Google Scholar 

  • Gregory SG, Barlow KF, McLay KE, et al. (2006) The DNA sequence and biological annotation of human chromosome 1. Nature 441:315–321

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Huang H, Rastegar M, Bodner C, Goh SL, Rambaldi I, Featherstone M (2005) MEIS C termini harbor transcriptional activation domains that respond to cell signaling. J Biol Chem 280:10119–10127

    Article  PubMed  CAS  Google Scholar 

  • Hubbard T, Andrews D, Caccamo M, Cameron G, Chen Y, Clamp M, Clarke L, Coates G, Cox T, Cunningham F, Curwen V, Cutts T, Down T, Durbin R, Fernandez-Suarez XM, Gilbert J, Hammond M, Herrero J, Hotz H, Howe K, Iyer V, Jekosch K, Kahari A, Kasprzyk A, Keefe D, Keenan S, Kokocinsci F, London D, Longden I, McVicker G, Melsopp C, Meidl P, Potter S, Proctor G, Rae M, Rios D, Schuster M, Searle S, Severin J, Slater G, Smedley D, Smith J, Spooner W, Stabenau A, Stalker J, Storey R, Trevanion S, Ureta-Vidal A, Vogel J, White S, Woodwark C, Birney E (2005) Ensembl 2005. Nucleic Acids Res 33:D447–D453

    Article  PubMed  CAS  Google Scholar 

  • Hyman CA, Bartholin L, Newfeld SJ, Wotton D (2003) Drosophila TGIF proteins are transcriptional activators. Mol Cell Biol 23:9262–9274

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    PubMed  CAS  Google Scholar 

  • Li T, Stark MR, Johnson AD, Wolberger C (1995) Crystal structure of the MATa1/MATα2 homeodomain heterodimer bound to DNA. Science 270:262–269

    Article  PubMed  CAS  Google Scholar 

  • Maclean JA, 2nd, Chen MA, Wayne CM, Bruce SR, Rao M, Meistrich ML, Macleod C, Wilkinson MF (2005) Rhox: a new homeobox gene cluster. Cell 120:369–382

    Article  PubMed  CAS  Google Scholar 

  • Mallatt J, Winchell CJ (2002) Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Mol Biol Evol 19:289–301

    PubMed  CAS  Google Scholar 

  • Man YG, Fu SW, Schwartz A, Pinzone JJ, Simmens SJ, Berg PE (2005) Expression of BP1, a novel homeobox gene, correlates with breast cancer progression and invasion. Breast Cancer Res Treat 90:241–247

    Article  PubMed  CAS  Google Scholar 

  • Mann RS, Affolter M (1998) Hox proteins meet more partners. Curr Opin Genet Dev 8:423–429

    Article  PubMed  CAS  Google Scholar 

  • Maulbecker CC, Gruss P (1993) The oncogenic potential of deregulated homeobox genes. Cell Growth Differ 4:431–441

    PubMed  CAS  Google Scholar 

  • Olson SA (2002) EMBOSS opens up sequence analysis. European Molecular Biology Open Software Suite. Brief Bioinform 3:87–91

    Article  PubMed  Google Scholar 

  • Pérez-Bercoff Å, Koch J, Bürglin TR (2006) LogoBar: a Java application to visualize protein logos with gaps. Bioinformatics 22:112–114

    Article  PubMed  Google Scholar 

  • Perri P, Bachetti T, Longo L, Matera I, Seri M, Tonini GP, Ceccherini I (2005) PHOX2B mutations and genetic predisposition to neuroblastoma. Oncogene 24:3050–3053

    Article  PubMed  CAS  Google Scholar 

  • Rauskolb C, Peifer M, Wieschaus E (1993) extradenticle, a regulator of homeotic gene activity, is a homolog of the homeobox-containing human proto-oncogene pbx1. Cell 74:1101–1112

    Article  PubMed  CAS  Google Scholar 

  • Rieckhof GE, Casares F, Ryoo HD, Abu-Shaar M, Mann RS (1997) Nuclear Translocation of Extradenticle Requires homothorax, which Encodes an Extradenticle-Related Homeodomain Protein Cell 91:171–183

    Article  PubMed  CAS  Google Scholar 

  • Ryan JF, Burton PM, Mazza ME, Kwong GK, Mullikin JC, Finnerty JR (2006) The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes. Evidence from the starlet sea anemone, Nematostella vectensis. Genome Biol 7:R64

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Pedro M, Dombret H, Baruchel A, Toribio ML, Sigaux F (2005) HOXA genes are included in genetic and biological networks defining human acute T-cell leukemia (T-ALL). Blood 106:274–286

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JC, Ryan JF, Watson JA, Webb J, Mullikin JC, Rokhsar D, Finnerty JR (2006) StellaBase: the Nematostella vectensis Genomics Database. Nucleic Acids Res 34:D495–D499

    Article  PubMed  CAS  Google Scholar 

  • Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:W609–W612

    Article  PubMed  CAS  Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Thorsteinsdottir U, Sauvageau G, Hough MR, Dragowska W, Lansdorp PM, Lawrence HJ, Largman C, Humphries RK (1997) Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol 17:495–505

    PubMed  CAS  Google Scholar 

  • Ting CT, Tsaur SC, Wu ML, Wu CI (1998) A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282:1501–1504

    Article  PubMed  CAS  Google Scholar 

  • Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, Richards S, Ashburner M, Hartenstein V, Celniker SE, Rubin GM (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 3:RESEARCH0088

    Article  PubMed  Google Scholar 

  • Van Auken K, Weaver D, Robertson B, Sundaram M, Saldi T, Edgar L, Elling U, Lee M, Boese Q, Wood WB (2002) Roles of the Homothorax/Meis/Prep homolog UNC-62 and the Exd/Pbx homologs CEH-20 and CEH-40 in C. elegans embryogenesis. Development 129:5255–5268

    PubMed  Google Scholar 

  • Wagner K, Mincheva A, Korn B, Lichter P, Popperl H (2001) Pbx4, a new Pbx family member on mouse chromosome 8, is expressed during spermatogenesis. Mech Dev 103:127–131

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhang J (2004) Rapid evolution of mammalian X-linked testis-expressed homeobox genes. Genetics 167:879–888

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Mann RS (2003) Requirement for two nearly identical TGIF-related homeobox genes in Drosophila spermatogenesis. Development 130:2853–2865

    Article  PubMed  CAS  Google Scholar 

  • Waskiewicz AJ, Rikhof HA, Moens CB (2002) Eliminating zebrafish pbx proteins reveals a hindbrain ground state. Dev Cell 3:723–733

    Article  PubMed  CAS  Google Scholar 

  • Wolf YI, Rogozin IB, Koonin EV (2004) Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. Genome Res 14:29–36

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Barbara Meyer for discussion and unpublished information. We thank Christoph Dieterich, Ralf Sommer, and Ulrich Technau for comments on the Pristionchus and Nematostella sequence data. Preliminary sequence data for B. malayi are deposited regularly into the GSS division of GenBank. The sequencing effort is part of the International Brugia Genome Sequencing Project and is supported by an award from the National Institute of Allergy and Infectious Diseases, National Institutes of Health. This research was supported by the Swedish Foundation for Strategic Research and the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Bürglin.

Additional information

[Reviewing Editor: Dr. Stuart Newfeld]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, K., Bürglin, T.R. Comprehensive Analysis of Animal TALE Homeobox Genes: New Conserved Motifs and Cases of Accelerated Evolution. J Mol Evol 65, 137–153 (2007). https://doi.org/10.1007/s00239-006-0023-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0023-0

Keywords

Navigation