Skip to main content
Log in

The Frequency of Eubacterium-to-Eukaryote Lateral Gene Transfers Shows Significant Cross-Taxa Variation Within Amoebozoa

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Single-celled bacterivorous eukaryotes offer excellent test cases for evaluation of the frequency of prey-to-predator lateral gene transfer (LGT). Here we use analysis of expressed sequence tag (EST) data sets to quantify the extent of LGT from eubacteria to two amoebae, Acanthamoeba castellanii and Hartmannella vermiformis. Stringent screening for LGT proceeded in several steps intended to enrich for authentic events while at the same time minimizing the incidence of false positives due to factors such as limitations in database coverage and ancient paralogy. The results were compared with data obtained when the same methodology was applied to EST libraries from a number of other eukaryotic taxa. Significant differences in the extent of apparent eubacterium-to-eukaryote LGT were found between taxa. Our results indicate that there may be substantial inter-taxon variation in the number of LGT events that become fixed even between amoebozoan species that have similar feeding modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anderson IJ, Watkins RF, Samuelson J, Spencer DF, Majoros WH, Gray MW, Loftus BJ (2005) Gene discovery in the Acanthamoeba castellanii genome. Protist 156:203–214

    Article  PubMed  Google Scholar 

  • Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197

    Article  PubMed  CAS  Google Scholar 

  • Andersson JO, Roger AJ (2002) Evolutionary analyses of the small subunit of glutamate synthase: gene order conservation, gene fusions, and prokaryote-to-eukaryote lateral gene transfers. Eukaryot Cell 1:304–310

    Article  PubMed  CAS  Google Scholar 

  • Andersson JO, Roger AJ (2003) Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes. BMC Evol Biol 3:14

    Article  PubMed  Google Scholar 

  • Andersson JO, Doolittle WF, Nesbø CL (2001) Are there bugs in our genome? Science 292:1848–1850

    Article  PubMed  CAS  Google Scholar 

  • Andersson JO, Sjögren ÅM, Davis LAM, Embley TM, Roger AJ (2003) Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr Biol 13:94–104

    Article  PubMed  CAS  Google Scholar 

  • Andersson JO, Sarchfield SW, Roger AJ (2005) Gene transfers from Nanoarchaeota to an ancestor of diplomonads and parabasalids. Mol Biol Evol 22:85–90

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 100:7678–7683

    Article  PubMed  CAS  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF (1999) Lateral genomics. Trends Cell Biol 1999:M5–M8

    Article  Google Scholar 

  • Doolittle WF, Boucher Y, Nesbø CL, Douady CJ, Andersson JO, Roger AJ (2002) How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos Trans R Soc Lond B Biol Sci 358:39–58

    Article  Google Scholar 

  • Eichinger L, Pachebat JA, Glöckner G, Rajandream M-A, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov BA, Rivero F, Bankier AT, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, Saunders D, Sodergren E, Davis P, Kerhornou A, Nie X, Hall N, Anjard C, Hemphill L, Bason N, Farbrother P, Desany B, Just E, Morio T, Rost R, Churcher C, Cooper J, Haydock S, van Driessche N, Cronin A, Goodhead I, Muzny D, Mourier T, Pain A, Lu M, Harper D, Lindsay R, Hauser H, James K, Quiles M, Madan Babu M, Saito T, Buchrieser C, Wardroper A, Felder M, Thangavelu M, Johnson D, Knights A, Loulseged H, Mungall K, Oliver K, Price C, Quail MA, Urushihara H, Hernandez J, Rabbinowitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenthal A, Cox EC, Chisholm RL, Gibbs R, Loomis WF, Platzer M, Kay RR, Williams J, Dear PH, Noegel AA, Barrell B, Kuspa A (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–178

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Figge RM, Schubert M, Brinkmann H, Cerff R (1999) Glyceraldehyde-3-phosphate dehydrogenase gene diversity in eubacteria and eukaryotes: evidence for intra- and inter-kingdom gene transfer. Mol Biol Evol 16:429–440

    PubMed  CAS  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    PubMed  CAS  Google Scholar 

  • Hall C, Brachat S, Dietrich FS (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell 4:1102–1115

    Article  PubMed  CAS  Google Scholar 

  • Harper JT, Keeling PJ (2004) Lateral gene transfer and the complex distribution of insertions in eukaryotic enolase. Gene 340:227–235

    Article  PubMed  CAS  Google Scholar 

  • Horn M, Wagner M (2004) Bacterial endosymbionts of free-living amoebae. J Euk Microbiol 51:509–514

    Article  PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Mullapudi N, Lancto CA, Scott M, Abrahamsen MS, Kissinger JC (2004) Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum. Genome Biol 5:R88

    Article  PubMed  Google Scholar 

  • Jeon KW (2004) Genetic and physiological interactions in the amoeba-bacteria symbiosis. J Eukaryot Microbiol 51:502–508

    Article  PubMed  Google Scholar 

  • Katz LA (2002) Lateral gene transfers and the evolution of eukaryotes: theories and data. Int J Syst Evol Microbiol 52:1893–1900

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Inagaki Y (2004) A class of eukaryotic GTPase with a punctate distribution suggesting multiple functional replacements of translation elongation factor 1α. Proc Natl Acad Sci USA 101:15380–15385

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Palmer JD (2001) Lateral transfer at the gene and subgenic levels in the evolution of eukaryotic enolase. Proc Natl Acad Sci USA 98:10745–10750

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742

    Article  PubMed  CAS  Google Scholar 

  • Kuiper MW, Wullings BA, Akkermans AD, Beumer RR, van der Kooij D (2004) Intracellular proliferation of Legionella pneumophila in Hartmannella vermiformis in aquatic biofilms grown on plasticized polyvinyl chloride. Appl Environ Microbiol 70:6826–6833

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG (2005) What tangled web: barriers to rampant horizontal gene transfer. Bioessays 27:741–747

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Loftus B, Anderson I, Davies R, Alsmark UCM, Samuelson J, Amedeo P, Roncaglia P, Berriman M, Hirt RP, Mann BJ, Nozaki T, Suh B, Pop M, Duchene M, Ackers J, Tannich E, Leippe M, Hofer M, Bruchhaus I, Willhoeft U, Bhattacharya A, Chillingworth T, Churcher C, Hance Z, Harris B, Harris D, Jagels K, Moule S, Mungall K, Ormond D, Squares R, Whitehead S, Quail MA, Rabbinowitsch E, Norbertczak H, Price C, Wang Z, Guillén N, Gilchrist C, Stroup SE, Bhattacharya S, Lohia A, Foster PG, Sicheritz-Ponten T, Weber C, Singh U, Mukherjee C, El-Sayed NM, Petri WA Jr, Clark CG, Embley TM, Barrell B, Fraser CM, Hall N (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433:865–868

    Article  PubMed  CAS  Google Scholar 

  • Neff RJ, Ray SA, Benton WF, Wilborn M (1964) Induction of synchronous encystment (differentiation) in Acanthamoeba sp. In: Prescott DM (ed) Methods in cell physiology, Vol I. Academic Press, New York, pp 55–83

    Google Scholar 

  • Qian Q, Keeling PJ (2001) Diplonemid glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and prokaryote-to-eukaryote lateral gene transfer. Protist 152:193–201

    Article  PubMed  CAS  Google Scholar 

  • Salzberg SL, White O, Peterson J, Eisen JA (2001) Microbial genes in the human genome: lateral transfer or gene loss? Science 292:1903–1906

    Article  PubMed  CAS  Google Scholar 

  • Schlieper D, Oliva MA, Andreu JM, Löwe J (2005) Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc Natl Acad Sci USA 102:9170–9175

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Sicheritz-Pontén T, Andersson SGE (2001) A phylogenomic approach to microbial evolution. Nucleic Acids Res 29:545–552

    Article  PubMed  Google Scholar 

  • Simpson AG, Roger AJ (2004) The real ‘kingdoms’ of eukaryotes. Curr Biol 14:R693–R696

    Article  PubMed  CAS  Google Scholar 

  • Stanhope MJ, Lupas A, Italia MJ, Koretke KK, Volker C, Brown JR (2001) Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 411:940–944

    Article  PubMed  CAS  Google Scholar 

  • Zardoya R, Ding X, Kitagawa Y, Chrispeels MJ (2002) Origin of plant glycerol transporters by horizontal gene transfer and functional recruitment. Proc Natl Acad Sci USA 99:14893–14896

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank C. Nesbø for her careful reading of the original draft of the manuscript and for her insightful comments. We also thank A. Roger for very useful discussions. This study was conducted under the auspices of the Protist EST Program (PEP), a Genome Canada large-scale genomics project, with funding through Genome Atlantic and the Atlantic Innovation Fund. M.W.G. is pleased to acknowledge salary support from the Canada Research Chairs Program and the Canadian Institute for Advanced Research (Program in Evolutionary Biology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell F. Watkins.

Additional information

[Reviewing Editor: Martin Kreitman]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watkins, R.F., Gray, M.W. The Frequency of Eubacterium-to-Eukaryote Lateral Gene Transfers Shows Significant Cross-Taxa Variation Within Amoebozoa. J Mol Evol 63, 801–814 (2006). https://doi.org/10.1007/s00239-006-0031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0031-0

Keywords

Navigation