Skip to main content
Log in

Patterns of Vertebrate Isochore Evolution Revealed by Comparison of Expressed Mammalian, Avian, and Crocodilian Genes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Vertebrate genomes are mosaics of isochores, defined as long (>100 kb) regions with relatively homogeneous within-region base composition. Birds and mammals have more GC-rich isochores than amphibians and fish, and the GC-rich isochores of birds and mammals have been suggested to be an adaptation to homeothermy. If this hypothesis is correct, all poikilothermic (cold-blooded) vertebrates, including the nonavian reptiles, are expected to lack a GC-rich isochore structure. Previous studies using various methods to examine isochore structure in crocodilians, turtles, and squamates have led to different conclusions. We collected more than 6000 expressed sequence tags (ESTs) from the American alligator to overcome sample size limitations suggested to be the fundamental problem in the previous reptilian studies. The alligator ESTs were assembled and aligned with their human, mouse, chicken, and western clawed frog orthologs, resulting in 366 alignments. Analyses of third-codon-position GC content provided conclusive evidence that the poikilothermic alligator has GC-rich isochores, like homeothermic birds and mammals. We placed these results in a theoretical framework able to unify available models of isochore evolution. The data collected for this study allowed us to reject the models that explain the evolution of GC content using changes in body temperature associated with the transition from poikilothermy to homeothermy. Falsification of these models places fundamental constraints upon the plausible pathways for the evolution of isochores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Benton MJ, Donoghue PC (2007) Paleontological evidence to date the tree of life. Mol Biol Evol 24:26–53

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G (1995) The human genome: organization and evolutionary history. Annu Rev Genet 29:445–447

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G (2000) Isochores and the evolutionary genomics of vertebrates. Gene 241:3–17

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G, Bernardi G (1991) Compositional properties of nuclear genes from cold-blooded vertebrates. J Mol Evol 33:57–67

    Article  CAS  Google Scholar 

  • Bernardi G, Hughes S, Mouchiroud D (1997) The major compositional transitions in the vertebrate genome. J Mol Evol 44:44–51

    Article  Google Scholar 

  • Birney E, Andrews D, Caccamo M, et al. (2006) Ensembl 2006. Nucleic Acids Res 34:556–561

    Article  Google Scholar 

  • Cacciò S, Zoubak S, D’Onofrio G, Bernardi G (1995) Nonrandom frequency patterns of synonymous substitutions in homologous mammalian genes. J Mol Evol 40:280–292

    Article  PubMed  Google Scholar 

  • Cacciò S, Jabbari K, Matassi G, Guermonprez F, Desgres J, Bernardi G (1997) Methylation patterns in the isochores of vertebrate genomes. Gene 205:119–124

    Article  PubMed  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  PubMed  CAS  Google Scholar 

  • Duret L, Semon M, Piganeau G, Mouchiroud D, Galtier N (2002) Vanishing GC-rich isochores in mammalian genomes. Genetics 162:1837–1847

    PubMed  CAS  Google Scholar 

  • Eyre-Walker A (1992) Evidence that both G + C rich and G + C poor isochores are replicated early and late in the cell cycle. Nucleic Acids Res 20:1497–1501

    Article  PubMed  CAS  Google Scholar 

  • Eyre-Walker A (1993) Recombination and mammalian genome evolution. Proc Biol Sci 252:237–243

    Article  PubMed  CAS  Google Scholar 

  • Eyre-Walker A (1999) Evidence of selection on silent site base composition in mammals: potential implications for the evolution of isochores and junk DNA. Genetics 152:675–683

    PubMed  CAS  Google Scholar 

  • Eyre-Walker A, Hurst LD (2001) The evolution of isochores. Nat Rev Genet 2:549–555

    Article  PubMed  CAS  Google Scholar 

  • Fryxell KJ, Zuckerkandl E (2000) Cytosine deamination plays a primary role in the evolution of mammalian isochores. Mol Biol Evol 17:1371–1383

    PubMed  CAS  Google Scholar 

  • Galtier N, Mouchiroud D (1998) Isochore evolution in mammals: a human-like ancestral structure. Genetics 150:1577–1584

    PubMed  CAS  Google Scholar 

  • Galtier N, Piganeau G, Mouchiroud D, Duret L (2001) GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. Genetics 159:907–911

    PubMed  CAS  Google Scholar 

  • Hackenberg M, Bernaola-Galvan P, Carpena P, Oliver JL (2005) The biased distribution of Alus in human isochores might be driven by recombination. J Mol Evol 60:365–377

    Article  PubMed  CAS  Google Scholar 

  • Hamada K, Horiike T, Kanaya S, Nakamura H, Ota H, Yatogo T, Okada K, Nakamura H, Shinozawa T (2002) Changes in body temperature pattern in vertebrates do not influence the codon usages of α-globin genes. Genes Genet Syst 77:197–207

    Article  PubMed  CAS  Google Scholar 

  • Hillenius WJ, Ruben JA (2004) Getting warmer, getting colder: Reconstructing crocodylomorph physiology. Physiol Biochem Zool 77:1068–1072

    Article  PubMed  Google Scholar 

  • Hughes S, Zelus D, Mouchiroud D (1999) Warm-blooded isochore structure in Nile crocodile and turtle. Mol Biol Evol 16:1521–1527

    PubMed  CAS  Google Scholar 

  • Isobe T, Feigelson ED, Akritas MG, Babu GJ (1990) Linear regression in astronomy. Astrophys J 364:104–113

    Article  Google Scholar 

  • Jabbari K, Bernardi G (2004) Body temperature and evolutionary genomics of vertebrates: a lesson from the genomes of Takifugu rubripes and Tetraodon nigroviridis. Gene 333:179–188

    Article  PubMed  CAS  Google Scholar 

  • Li WH (1997) Molecular Evolution. Sinauer Associates, Sunderland, MA, pp 407–411

    Google Scholar 

  • Liang F, Holt I, Pertea G, Karamycheva S, Salzberg SL, Quackenbush J (2000) An optimized protocol for analysis of EST sequences. Nucleic Acids Res 28:3657–3665

    Article  PubMed  CAS  Google Scholar 

  • Maddison D, Maddison W (2002) MacClade. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Musto H, Romero H, Zavala A, Bernardi G (1999) Compositional correlations in the chicken genome. J Mol Evol 49:325–329

    Article  PubMed  CAS  Google Scholar 

  • Saccone S, Cacciò S, Perani P, Andreozzi L, Rapisarda A, Motta S, Bernardi G (1997) Compositional mapping of mouse chromosomes and identification of the gene-rich regions. Chromosome Res 5:293–300

    Article  PubMed  CAS  Google Scholar 

  • Seebacher F, Shine R (2004) Evaluating thermoregulation in reptiles: the fallacy of the inappropriately applied method. Physiol Biochem Zool 77:688–695

    Article  PubMed  Google Scholar 

  • Seebacher F, Grigg GC, Beard LA (1999) Crocodiles as dinosaurs: behavioural thermoregulation in very large ectotherms leads to high and stable body temperatures. J Exp Biol 202:77–86

    PubMed  Google Scholar 

  • Seymour RS, Bennett-Stamper CL, Johnston SD, Carrier DR, Grigg GC (2004) Evidence for endothermic ancestors of crocodiles at the stem of archosaur evolution. Physiol Biochem Zool 77:1051–1067

    Article  PubMed  Google Scholar 

  • Swofford D (1998) PAUP*: phylogenetic analysis using parsimony (*and other methods), ver. 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Varriale A, Bernardi G (2006) DNA methylation in reptiles. Gene 385:122–127

    Article  PubMed  CAS  Google Scholar 

  • Webster MT, Axelsson E, Ellegren H (2006) Strong regional biases in nucleotide substitution in the chicken genome. Mol Biol Evol 23:1203–1216

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Sharp PM, Li WH (1989) Mutation rates differ among regions of mammalian genome. Nature 337:283–285

    Article  PubMed  CAS  Google Scholar 

  • Zhang CT, Wang J, Zhang R (2001) A novel method to calculate the G+C content of genomic DNA sequences. J Biomol Struct Dyn 19:333–341

    PubMed  CAS  Google Scholar 

  • Zoubak S, Clay O, Bernardi G (1996) The gene distribution of the human genome. Gene 174:95–102

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the members of the Braun-Kimball lab group for helpful discussion and to Holly Kindsvater and Mike McCoy for help with R and statistical advice. This work was supported in part by grants to Y.K. and T.I. (Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan and grants from the Ministry of Environment, Japan) and to E.L.B. and L.J.G. (University of Florida Opportunity Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jena L. Chojnowski.

Additional information

Reviewing Editor: Dr. Nicolas Galtier

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chojnowski, J.L., Franklin, J., Katsu, Y. et al. Patterns of Vertebrate Isochore Evolution Revealed by Comparison of Expressed Mammalian, Avian, and Crocodilian Genes. J Mol Evol 65, 259–266 (2007). https://doi.org/10.1007/s00239-007-9003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-007-9003-2

Keywords

Navigation