Skip to main content
Log in

Plastid Isoprenoid Metabolism in the Oyster Parasite Perkinsus marinus Connects Dinoflagellates and Malaria Pathogens—New Impetus for Studying Alveolates

  • Letter to the Editor
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Bodyl A (2006) Do plastid-related characters support the chromalveolate hypothesis? J Phycol 41:712–719

    Article  Google Scholar 

  • Borrmann S, Adegnika AA, Moussavou F, Oyakhirome S, Esser G, Matsiegui PB, Ramharter M, Lundgren I, Kombila M, Issifou S, Hutchinson D, Wiesner J, Jomaa H, Kremsner PG (2005) Short-course regimens of artesunate-fosmidomycin in treatment of uncomplicated Plasmodium falciparum malaria. Antimicrob Agents Chemother 49:3749–3754

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann H, van der Giezen M, Zhou Y, Poncelin de Raucourt G, Philippe H (2005) An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst Biol 54:743–757

    Article  PubMed  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Euk Microbiol 46:347–366

    Article  PubMed  CAS  Google Scholar 

  • Chesnick JM, Kooistra WH, Wellbrock U, Medlin L (1997) Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticium (Pyrrhophyta). J Euk Microbiol 44:314–320

    Article  PubMed  CAS  Google Scholar 

  • Delwiche C (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177

    Article  PubMed  Google Scholar 

  • Eisen JA, 52 co-authors (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4:9

    Google Scholar 

  • Foth BJ, McFadden GI (2003) The apicoplast: a plastid in Plasmodium falciparum and other Apicomplexan parasites. Int Rev Cytol 224:57–110

    Article  PubMed  Google Scholar 

  • Gardner MJ, et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  PubMed  CAS  Google Scholar 

  • Grauvogel C, Petersen J (2007) Isoprenoid biosynthesis authenticates the classification of the green alga Mesostigma viride as an ancient streptophyte. Gene 396:125–133

    Article  PubMed  CAS  Google Scholar 

  • Grauvogel C, Brinkmann H, Petersen J (2007) Evolution of the glucose-6-phosphate isomerase: The plasticity of primary metabolism in photosynthetic eukaryotes. Mol Biol Evol 24:1611–1621

    Article  PubMed  CAS  Google Scholar 

  • Hackett JD, Maranda L, Yoon HS, Bhattacharya D (2003) Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae). J Phycol 39:440–448

    Article  CAS  Google Scholar 

  • Harper J, Keeling P (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20:1730–1735

    Article  PubMed  CAS  Google Scholar 

  • Inagaki Y, Simpson A, Dacks J, Roger A (2004) Phylogenetic artifacts can be caused by leucine, serine, and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study. Syst Biol 53:582–593

    Article  PubMed  Google Scholar 

  • Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D, Beck E (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:1573–1576

    Article  PubMed  CAS  Google Scholar 

  • Katsuki H, Bloch K (1967) Studies on the Biosynthesis of ergosterol in yeast: formation of methylated intermediates. J Biol Chem 242:222–227

    PubMed  CAS  Google Scholar 

  • Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97:13172–13177

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400:271–274

    Article  PubMed  CAS  Google Scholar 

  • Lynen F (1967) Biosynthetic pathways from acetate to natural products. Pure Appl Chem 14:137–167

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI, Waller RF (1997) Plastids in parasites of humans. Bioessays 19:1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Patron NJ, Waller RF, Keeling PJ (2006) A tertiary plastid uses genes from two endosymbionts. J Mol Biol 357:1373–1382

    Article  PubMed  CAS  Google Scholar 

  • Petersen J, Teich R, Brinkmann H, Cerff R (2006) A “green” phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts and dinoflagellates. J Mol Evol 62:143–157

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993). Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    PubMed  CAS  Google Scholar 

  • Saldarriaga JF, Taylor FJ, Keeling PJ, Cavalier-Smith T (2001) Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol 53:204–213

    Article  PubMed  CAS  Google Scholar 

  • Saldarriaga JF, McEwan ML, Fast NM, Taylor FJ, Keeling PJ (2003) Multiple protein phylogenies show that Oxyrrhis marina and Perkinsus marinus are early branches of the dinoflagellate lineage. Int J Syst Evol Microbiol 53:355–365

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF (2007) Plastid genes in a non-photosynthetic dinoflagellate. Protist 158:105–117

    Article  PubMed  CAS  Google Scholar 

  • Schwender J, Gemünden C, Lichtenthaler HK (2001) Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212:416–423

    Article  PubMed  CAS  Google Scholar 

  • Spector DL (1984) Dinoflagellate nuclei. In: Spector DL (ed.) Dinoflagellates. Academic Press, Orlando, FL, pp 107–147

    Google Scholar 

  • Stelter K, El-Sayed NM, Seeber F (2007) The expression of a plant-type ferredoxin redox system provides molecular evidence for a plastid in the early dinoflagellate Perkinsus marinus. Protist 158:119–130

    Article  PubMed  CAS  Google Scholar 

  • Taylor FJR (1980) On dinoflagellate evolution. Biosystems 13:65–108

    Article  PubMed  CAS  Google Scholar 

  • Taylor FJR (2004) Illumination or confusion? Dinoflagellate molecular phylogenetic data viewed from a primarily morphological standpoint. Phycol Res 52:308–324

    Article  CAS  Google Scholar 

  • Teich R, Zauner S, Baurain D, Brinkmann H, Petersen J (2007) Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in Plantae and complex algae. A single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses. Protist 158:263–276

    Article  PubMed  CAS  Google Scholar 

  • Teles-Grilo ML, Tato-Costa J, Duarte SM, Maia A, Casal G, Azevedo C (2007) Is there a plastid in Perkinsus atlanticus (phylum Perkinsozoa)? Eur J Protistol 43:163–167

    Article  PubMed  Google Scholar 

  • Tengs T, Dahlberg O, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche C, Jakobsen K (2000) Phylogenetic analyses indicate that the 19′-hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. Mol Biol Evol 17:718–729

    PubMed  CAS  Google Scholar 

  • Van de Peer Y, De Wachter R (1997) Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA. J Mol Evol 45:619–630

    Article  PubMed  Google Scholar 

  • Villalba A, Reece KS, Ordás MC, Casas SM, Figueras A (2004) Perkinsosis in molluscs—a review. Aquat Liv Res 17:411–432

    Article  Google Scholar 

  • Wiesner J, Borrmann S, Jomaa H (2003) Fosmidomycin for the treatment of malaria. Parasitol Res 90(Suppl 2):S71–S76

    Article  PubMed  Google Scholar 

  • Yoon HS, Hackett JD, Bhattacharya D (2002) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci USA 99:11724–11749

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ulrike Brandt (Braunschweig) for excellent technical assistance, René Teich for practical assistance, and William Martin (Düsseldorf) for helpful comments on the manuscript. Preliminary sequence data of Perkinsus marinus were obtained from The Institute for Genomic Research through the Web site at http://www.tigr.org, and sequencing was accomplished with support from the National Science Foundation. Major financial support, including a Ph.D. stipend for C.G., was received from the Deutsche Forschungsgemeinschaft (CE 1/27-2). This is VIMS contribution number 2871. The authors also want to thank two anonymous reviewers for careful reading and constructive criticism of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Petersen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 91 kb)

(DOC 81 kb)

(DOC 60 kb)

(DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grauvogel, C., Reece, K.S., Brinkmann, H. et al. Plastid Isoprenoid Metabolism in the Oyster Parasite Perkinsus marinus Connects Dinoflagellates and Malaria Pathogens—New Impetus for Studying Alveolates. J Mol Evol 65, 725–729 (2007). https://doi.org/10.1007/s00239-007-9053-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-007-9053-5

Keywords

Navigation