Skip to main content
Log in

Symbiobacterium Lost Carbonic Anhydrase in the Course of Evolution

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Recent genetic studies have elucidated that carbonic anhydrase (CA; EC 4.2.1.1), a ubiquitous enzyme catalyzing interconversion between CO2 and bicarbonate, is essential for microbial growth under ambient air but not under high-CO2 air. The irregular distribution of the phylogenetically distinct types of CA in the prokaryotic genome suggests its complex evolutionary history in prokaryotes. This paper deals with the genetic defect of CA in Symbiobacterium thermophilum, a syntrophic bacterium that effectively grows on CO2 generated by other bacteria. Phylogenetic analysis based on 31 ribosomal protein sequences demonstrated the affiliation of Symbiobacterium with the class Clostridia with 100% bootstrap support. The phylogeny of β- and γ-type CA distributed among Clostridia supported the view that S. thermophilum and several related organisms lost this enzyme during the course of evolution. The loss of CA could be based on the availability of a high level of CO2 in their living environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilera J, Van Dijken JP, De Winde JH, Pronk JT (2005) Carbonic anhydrase (Nce 103p): an essential biosynthetic enzyme for growth of Saccharomyces cerevisiae at atmospheric carbon dioxide pressure. Biochem J 391:311–316

    Article  PubMed  CAS  Google Scholar 

  • Gao B, Gupta RS (2005) Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. Int J Syst Evol Microbiol 55:2401–2412

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Kato J (2003) Indispensability of the Escherichia coli carbonic anhydrases YadF and CynT in cell proliferation at a low CO2 partial pressure. Biosci Biotechnol Biochem 67:919–922

    Article  PubMed  CAS  Google Scholar 

  • Hippe H, Andreesen JR, Gottschalk G (1992) The genus Clostridium—nonmedical. In: Balows A, Trueper HG, Dworkin M, Harder W, Scheleifer K-H (eds) The procaryotes, a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd edn. Springer, New York, pp 1800–1866

    Google Scholar 

  • Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357

    Article  PubMed  CAS  Google Scholar 

  • Kusian B, Sultemeyer D, Bowien B (2002) Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO2 concentrations. J Bacteriol 184:5018–5026

    Article  PubMed  CAS  Google Scholar 

  • Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FM (2005) A cadmium enzyme from a marine diatom. Nature 435:42

    Article  PubMed  CAS  Google Scholar 

  • Merlin C, Masters M, McAteer S, Coulson A (2003) Why is carbonic anhydrase essential to Escherichia coli? J Bacteriol 185:6415–6424

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhashi S, Ohnishi J, Hayashi M, Ikeda M (2004) A gene homologous to beta-type carbonic anhydrase is essential for the growth of Corynebacterium glutamicum under atmospheric conditions. Appl Microbiol Biotechnol 63:592–601

    Article  PubMed  CAS  Google Scholar 

  • Ohno M, Okano I, Watsuji T, Kakinuma T, Ueda K, Beppu T (1999) Establishing the independent culture of a strictly symbiotic bacterium Symbiobacterium thermophilum from its supporting Bacillus strain. Biosci Biotechnol Biochem 63:1083–1090

    Article  PubMed  CAS  Google Scholar 

  • Ohno M, Shiratori H, Park MJ, Saitoh Y, Kumon Y, Yamashita N, Hirata A, Nishida H, Ueda K, Beppu T (2000) Symbiobacterium thermophilum gen. nov., sp. nov., a symbiotic thermophile that depends on co-culture with a Bacillus strain for growth. Int J Syst Evol Microbiol 50:1829–1832

    PubMed  CAS  Google Scholar 

  • Oshima K, Nishida H (2007) Phylogenetic relationships among mycoplasmas based on the whole genomic information. J Mol Evol 65:249–258

    Article  PubMed  CAS  Google Scholar 

  • Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA 101:2512–2517

    Article  PubMed  CAS  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86

    Article  PubMed  CAS  Google Scholar 

  • Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366

    Article  PubMed  CAS  Google Scholar 

  • Sugihara T, Watsuji TO, Kubota S, Yamada K, Oka K, Watanabe K, Meguro M, Sawada E, Yoshihara K, Ueda K, Beppu T (2008) Distribution of Symbiobacterium thermophilum and related bacteria in the marine environment. Biosci Biotechnol Biochem 72:204–211

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Horinouchi S, Beppu T (1988) Growth of a tryptophanase-producing thermophile, Symbiobacterium thermophilum gen. nov., sp. nov., is dependent on co-culture with a Bacillus sp. J Gen Microbiol 134:2353–2362

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Ueda K, Beppu T (2007) Lessons from studies of Symbiobacterium thermophilum, a unique syntrophic bacterium. Biosci Biotechnol Biochem 71:1115–1121

    Article  PubMed  CAS  Google Scholar 

  • Ueda K, Ohno M, Yamamoto K, Nara H, Mori Y, Shimada M, Hayashi M, Oida H, Terashima Y, Nagata M, Beppu T (2001) Distribution and diversity of symbiotic thermophiles, Symbiobacterium thermophilum and related bacteria, in natural environments. Appl Environ Microbiol 67:3779–3784

    Article  PubMed  CAS  Google Scholar 

  • Ueda K, Tagami Y, Kamihara Y, Shiratori H, Takano H, Beppu T (2008) Isolation of bacteria whose growth is dependent on high levels of CO2 and implications of their potential diversity. Appl Environ Microbiol 74:4535–4538

    Article  PubMed  CAS  Google Scholar 

  • Ueda K, Yamashita A, Ishikawa J, Shimada M, Watsuji T, Morimura K, Ikeda H, Hattori M, Beppu T (2004) Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism. Nucleic Acids Res 32:4937–4944

    Article  PubMed  CAS  Google Scholar 

  • Watsuji T-O, Kato T, Ueda K, Beppu T (2006) CO2 supply induces the growth of Symbiobacterium thermophilus, a syntrophic bacterium. Biosci Biotechnol Biochem 70:753–756

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Davis RE, Lee IM (2005) Phylogenetic positions of ‘Candidatus Phytoplasma asteris’ and Spiroplasma kunkelii as inferred from multiple sets of concatenated core housekeeping proteins. Int J Syst Evol Microbiol 55:2131–2141

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the High-Tech Research Center Project of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Ueda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 104 kb)

Below is the link to the electronic supplementary material.

(PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, H., Beppu, T. & Ueda, K. Symbiobacterium Lost Carbonic Anhydrase in the Course of Evolution. J Mol Evol 68, 90–96 (2009). https://doi.org/10.1007/s00239-008-9191-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9191-4

Keywords

Navigation