Skip to main content

Advertisement

Log in

Phylogenetic Analysis and Molecular Evolution of Guanine Deaminases: From Guanine to Dendrites

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Guanine deaminase (GDA; guanase) is a ubiquitous enzyme that catalyzes the first step of purine metabolism by hydrolytic deamination of guanine, resulting in the production of xanthine. This hydrolase subfamily member plays an essential role in maintaining homeostasis of cellular triphosphate nucleotides for energy, signal transduction pathways, and nitrogen sources. In mammals, GDA protein levels can play a role in neuronal development by regulating dendritic arborization. We previously demonstrated that the most abundant alternative splice form of GDA in mammals, termed cypin (cytosolic PSD-95 interactor), interacts with postsynaptic density proteins, regulates microtubule polymerization, and increases dendrite number. Since purine metabolism and dendrite development were previously thought to be independent cellular processes, this multifunctional protein serves as a new target for the treatment of cognitive disorders characterized by aberrant neuronal morphology and purine metabolism. Although the enzymatic activity of GDA has been conserved during evolution from prokaryotes to higher eukaryotes, a detailed evolutionary assessment of the principal domains in GDA proteins has not yet been put forward. In this study, we perform a complete evolutionary analysis of the full-length sequences and the principal domains in guanine deaminases. Furthermore, we reconstruct the molecular phylogeny of guanine deaminases with neighbor-joining, maximum-likelihood, and UPGMA methods of phylogenetic inference. This study can act as a model whereby a universal housekeeping enzyme may be adapted to act also as a key regulator of a developmental process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akum BF, Chen M, Gunderson SI, Riefler GM, Scerri-Hansen MM, Firestein BL (2004) Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat Neurosci 7:145–152

    Article  PubMed  CAS  Google Scholar 

  • Bergthorsson U, Andersson DI, Roth JR (2007) Ohno’s dilemma: evolution of new genes under continuous selection. Proc Natl Acad Sci USA 104:17004–17009

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Charych EI, Akum BF, Goldberg JS, Jörnsten RJ, Rongo C, Zheng JQ, Firestein BL (2006) Activity-independent regulation of dendrite patterning by postsynaptic density protein PSD-95. J Neurosci 26(40):10164-10176

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Firestein BL (2007) RhoA regulates dendrite branching in hippocampal neurons by decreasing cypin protein levels. J Neurosci 27:8378–8386

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Lucas KG, Akum BF, Balasingam G, Stawicki TM, Provost JM, Riefler GM, Jornsten RJ, Firestein BL (2005) A novel role for snapin in dendrite patterning: interaction with cypin. Mol Biol Cell 16:5103–5114

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fernandez JR, Welsh WJ, Firestein BL (2008) Structural characterization of the zinc binding domain in cytosolic PSD-95 interactor (cypin): role of zinc binding in guanine deamination and dendrite branching. Proteins 70:873–881

    Article  PubMed  CAS  Google Scholar 

  • Firestein BL, Brenman JE, Aoki C, Sanchez-Perez AM, El-Husseini AE, Bredt DS (1999) Cypin: a cytosolic regulator of PSD-95 postsynaptic targeting. Neuron 24:659–672

    Article  PubMed  CAS  Google Scholar 

  • Fogle PJ, Bieber AL (1975) Purification of rabbit liver guanine aminohydrolase. Prep Biochem 5:59–77

    Article  PubMed  CAS  Google Scholar 

  • Galilea JM, Canela EI, Bozal J (1981) Characterization of bovine liver guanine aminohydrolase. Int J Biochem 13:773–776

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1932) The causes of evolution. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Kimura M, Ota T (1974) On some principles governing molecular evolution. Proc Natl Acad Sci USA 71:2848–2852

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tewari KK, Krishnan PS (1965) Guanine-deaminase activity in rat brain and liver. Biochem J 95:797–802

    PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lee SF, Kelly M, McAlister A, Luck SN, Garcia EL, Hall RA, Robins-Browne RM, Frankel G, Hartland EL (2008) A C-terminal class I PDZ binding motif of EspI/NleA modulates the virulence of attaching and effacing Escherichia coli and Citrobacter rodentium. Cell Microbiol 10(2):499–513

    PubMed  CAS  Google Scholar 

  • Liaw SH, Chang YJ, Lai CT, Chang HC, Chang GG (2004) Crystal structure of Bacillus subtilis guanine deaminase: the first domain-swapped structure in the cytidine deaminase superfamily. J Biol Chem 279:35479–35485

    Article  PubMed  CAS  Google Scholar 

  • Maynes JT, Yuan RG, Snyder FF (2000) Identification, expression, and characterization of Escherichia coli guanine deaminase. J Bacteriol 182:4658–4660

    Article  PubMed  CAS  Google Scholar 

  • Nygaard P, Bested SM, Andersen KA, Saxild HH (2000) Bacillus subtilis guanine deaminase is encoded by the yknA gene and is induced during growth with purines as the nitrogen source. Microbiology 146(Pt 12):3061–3069

    PubMed  CAS  Google Scholar 

  • Muller HJ (1936) Bar duplication. Science 83:528–530

    Article  PubMed  Google Scholar 

  • Paletzki RF (2002) Cloning and characterization of guanine deaminase from mouse and rat brain. Neuroscience 109:15–26

    Article  PubMed  CAS  Google Scholar 

  • Ponting CP, Phillips C, Davies KE, Blake DJ (1997) PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays 19:469–479

    Article  PubMed  CAS  Google Scholar 

  • Prodanov K, Jerev S (1971) “Discharge” of guanine deaminase from the dog’s lung. Nauchni Tr Vissh Med Inst Sofiia 50:57–60

    PubMed  CAS  Google Scholar 

  • Rossi CA, Hakim G, Solaini G (1978) Purification and properties of pig brain guanine deaminase. Biochim Biophys Acta 526:235–246

    PubMed  CAS  Google Scholar 

  • Saint-Marc C, Daignan-Fornier B (2004) GUD1 (YDL238c) encodes Saccharomyces cerevisiae guanine deaminase, an enzyme expressed during post-diauxic growth. Yeast 21:1359–1363

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29

    Article  PubMed  CAS  Google Scholar 

  • Sohn J, Grant RA, Sauer RT (2007) Allosteric activation of DegS, a stress sensor PDZ protease. Cell 131(3):572–583

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Sneath PHA (1973) Principles of numerical taxonomy. Freeman, New York

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Yao L, Cukier RI, Yan H (2007) Catalytic mechanism of guanine deaminase: an ONIOM and molecular dynamics study. J Phys Chem B 111:4200–4210

    Article  PubMed  CAS  Google Scholar 

  • Yuan G, Bin JC, McKay DJ, Snyder FF (1999) Cloning and characterization of human guanine deaminase. Purification and partial amino acid sequence of the mouse protein. J Biol Chem 274:8175–8180

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

Download references

Acknowledgments

J.R.F. is a graduate trainee of the IGERT Program on Integratively Engineered Biointerfaces at Rutgers, under NSF Grant DGE-0333196. This work was supported in part by a Johnson and Johnson Discovery Grant, a New Jersey Governor’s Council on Autism Pilot Grant, National Science Foundation Grants IBN-0234206 and IBN-0548543, and March of Dimes Foundation Grant 1-FY04-107 (to B.L.F). We thank Dr. Chi-hua Chiu for comments on and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonnie L. Firestein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, J.R., Byrne, B. & Firestein, B.L. Phylogenetic Analysis and Molecular Evolution of Guanine Deaminases: From Guanine to Dendrites. J Mol Evol 68, 227–235 (2009). https://doi.org/10.1007/s00239-009-9205-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9205-x

Keywords

Navigation