Skip to main content
Log in

Evolution of the Metazoan-Specific Importin α Gene Family

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Importin αs are import receptors for nuclear localization signal-containing proteins. Most animal importin αs assort into α1, α2, and α3 groups. Studies in Drosophila melanogaster, Caenorhabditis elegans, and mouse suggest that the animal importin α gene family evolved from ancestral plant-like genes to serve paralog-specific roles in gametogenesis. To explore this hypothesis we extended the phylogenetic analysis of the importin α gene family to nonbilateral animals and investigated whether animal-like genes occur in premetazoan taxa. Maximum likelihood analysis suggests that animal-like importin α genes occur in the Choanoflaggelate Monosiga brevicollis and the amoebozoan Dictyostelium; however, both of these results are caused by long-branch attraction effects. The absence of animal-like α genes in premetazoan taxa is consistent with the hypothesis that they duplicated and then specialized to function in animal gametogenesis. The gene structures of the importin αs provide insight into how the animal importin α gene family may have evolved from the most likely ancestral gene. Interestingly, animal α1s are more similar to plant and fungal α1-like sequences than they are to animal α2s or α3s. We show that animal α1 genes share most of their introns with plant α1-like genes, and α2s and α3s share many more intron positions with each other than with the α1s. Together, phylogenetics and gene structure analysis suggests a parsimonious path for the evolution of the mammalian importin α gene family from an ancestral α1-like progenitor. Finally, these results establish a rational basis for a unified nomenclature of the importin α gene family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abedin M, King N (2008) The premetazoan ancestry of cadherins. Science 319:946–948

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Andrade MA, Petosa C, O’Donoghue SI, Muller CW, Bork P (2001) Comparison of ARM and HEAT protein repeats. J Mol Biol 309:1–18

    Article  PubMed  CAS  Google Scholar 

  • Anisimova M, Gascuel O (2006) Approximate likelihood ratio test for branches: a fast, accurate and powerful alternative. Syst Biol 55:539–552

    Article  PubMed  Google Scholar 

  • Bergsten J (2005) A review of long-branch attraction. Cladistics 21:163–193

    Article  Google Scholar 

  • Bruns T (2006) Evolutionary biology: a kingdom revised. Nature 443:758–761

    Article  PubMed  CAS  Google Scholar 

  • Chevenet F, Brun C, Banuls AL, Jacq B, Christen R (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7:439

    Article  PubMed  Google Scholar 

  • Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 12:426–427

    Article  Google Scholar 

  • Coates JC (2003) Armadillo repeat proteins: beyond the animal kingdom. Trends Cell Biol 13:463–471

    Article  PubMed  CAS  Google Scholar 

  • Conti E, Kuriyan J (2000) Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin alpha. Structure 8:329–338

    Article  PubMed  CAS  Google Scholar 

  • Conti EM, Uy L, Leighton G, Blobel G, Kuriyan J (1998) Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94:193–204

    Article  PubMed  CAS  Google Scholar 

  • Conti E, Muller CW, Stewart M (2006) Karyopherin flexibility in nucleocytoplasmic transport. Curr Opin Struct Biol 16:237–244

    Article  PubMed  CAS  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:1–5

    Article  Google Scholar 

  • Fontes MR, Teh T, Jans D, Brinkworth RI, Kobe B (2003) Structural basis for the specificity of bipartite nuclear localization sequence binding by importin-alpha. J Biol Chem 25:27981–27987

    Article  Google Scholar 

  • Geles KG, Adam SA (2001) Germline and developmental roles of the nuclear transport factor importin alpha3 in C. elegans. Development 128:1817–1830

    PubMed  CAS  Google Scholar 

  • Geles KG, Johnson JJ, Jong S, Adam SA (2002) A role for Caenorhabditis elegans importin IMA-2 in germ line and embryonic mitosis. Mol Biol Cell 13:3138–3147

    Article  PubMed  CAS  Google Scholar 

  • Giarre M, Torok I, Schmit R, Gorjanacz M, Kiss I, Mechler BM (2002) Patterns of importin alpha expression during Drosophila spermatogenesis. J Struct Biol 140:279–290

    Article  PubMed  CAS  Google Scholar 

  • Goldfarb DS, Corbett AH, Mason DA, Harreman MT, Adam SA (2004) Importin α: a multipurpose nuclear transport receptor. Trends Cell Biol 14:505–514

    Article  PubMed  CAS  Google Scholar 

  • Gorjanacz M, Adam G, Torok I, Mechler BM, Szlanka T, Kiss I (2002) Importin-alpha 2 is critically required for the assembly of ring canals during Drosophila oogenesis. Dev Biol 251:271–282

    Article  PubMed  CAS  Google Scholar 

  • Grimson MJ, Coates JC, Reynolds JP, Shipman M, Blanton RL, Harwood AJ (2000) Adherens junctions and beta-catenin-mediated cell signaling in a non-metazoan organism. Nature 408:727–731

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Higgins DG, Bleasby A, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191

    PubMed  CAS  Google Scholar 

  • Hobmayer E, Hatta M, Fischer R, Fujisawa T, Holstein TW, Sugiyama T (1996) Identification of a Hydra homologue of the beta-catenin/plakoglobin/armadillo gene family. Gene 172:155–159

    Article  PubMed  CAS  Google Scholar 

  • Hogarth CA, Calanni S, Jans DA, Loveland KL (2006) Importin alpha mRNAs have distinct expression profiles during spermatogenesis. Dev Dyn 235:253–262

    Article  PubMed  CAS  Google Scholar 

  • Hogarth C, Itman C, Jans DA, Loveland KL (2005) Regulated nucleocytoplasmic tansport in spermatogenesis: a driver of cellular differentiation? Bioessays 27:1011–1025

    Article  PubMed  CAS  Google Scholar 

  • Huber AH, Nelson W, Weis WI (1997) Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90:871–882

    Article  PubMed  CAS  Google Scholar 

  • Jordon IK, Wolf YI, Koonin EV (2004) Duplicated genes evolve slower than singletons despite the initial rate increase. BMC Evol Biol 4:22–34

    Article  Google Scholar 

  • Kamei Y, Yuba S, Nakayma T, Yoneda Y (1999) Three distinct classes of the alpha-subunit of the nuclear pore-targeting complex (importin-alpha) are differentially expressed in adult mouse tissues. J Histochem Cytochem 47:363–372

    PubMed  CAS  Google Scholar 

  • Kobe B (1999) Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nature Struct Biol 6:388–397

    Article  PubMed  CAS  Google Scholar 

  • Kobe B, Gleichmann T, Horne J, Jennings IG, Scotney PD, The T (1999) Turn up the HEAT. Structure 7:R91–R97

    Article  PubMed  CAS  Google Scholar 

  • Kohler M, Ansieau S, Prehn S, Leutz A, Haller H, Hartmann E (1997) Cloning of two novel human importin-alpha subunits and analysis of the expression pattern of the importin-alpha protein family. FEBS Lett 417:104–108

    Article  PubMed  CAS  Google Scholar 

  • Kosugi S, Hasebe M, Matsumura N, Takashima H, Miyamoto-Sato E, Tomita M, Yanagawa H (2008) Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem [Epub ahead of print]

  • Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH (2007) Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 282:5101–5105

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Matsuura Y, Liu SM, Stewart M (2005) Structural basis for nuclear import complex dissociation by RanGTP. Nature 435:693–696

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Richardson AO (2002) The evolution of spliceosomal introns. Curr Opin Genet Dev 12:701–710

    Article  PubMed  CAS  Google Scholar 

  • Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65:570–594

    Article  PubMed  CAS  Google Scholar 

  • Makarova KS, Wolf YI, Mekhedov SL, Mirkin BG, Koonin EV (2005) Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res 33:4626–4638

    Article  PubMed  CAS  Google Scholar 

  • Malik HS, Eickbush T, Goldfarb DS (1997) Evolutionary specialization of the nuclear targeting apparatus. Proc Natl Acad Sci USA 94:13738–13742

    Article  PubMed  CAS  Google Scholar 

  • Mans BJ, Anantharaman V, Aravind L, Koonin EV (2004) Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3:1612–1637

    PubMed  CAS  Google Scholar 

  • Mason A, Fleming RJ, Goldfarb DS (2002) Drosophila melanogaster importin α1 and α3 can replace importin α2 during spermatogenesis but not oogenesis. Genetics 161:157–170

    PubMed  Google Scholar 

  • Mason DA, Mathe E, Fleming RJ, Goldfarb DS (2003) The Drosophila melanogaster importin a3 locus encodes an essential gene required for the development of both larval and adult tissues. Genetics 165:1943–1958

    PubMed  CAS  Google Scholar 

  • Mosammaparast N, Pemberton LF (2004) Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol 14:547–556

    Article  PubMed  CAS  Google Scholar 

  • Nachury MV, Ryder U, Lamond AI, Weis K (1998) Cloning and characterization of hSRP1 gamma, a tissue-specific nuclear transport factor. Proc Natl Acad Sci USA 95:582–587

    Article  PubMed  CAS  Google Scholar 

  • Prieve MG, Guttridge K, Munguia JE, Waterman ML (1996) The nuclear localization signal of lymphoid enhancer factor-1 is recognized by two differentially expressed Srp1-nuclear localization sequence receptor proteins. J Biol Chem 13:7654–7658

    Google Scholar 

  • Quan Y, Ji ZL, Wang X, Tartakoff AM, Tao T (2008) Evolutionary and transcriptional analysis of karyopherin beta superfamily proteins. Mol Cell Proteomics 7:1254–1269

    Article  PubMed  CAS  Google Scholar 

  • Ratan R, Mason DA, Sinnot B, Goldfarb DS, Fleming RJ (2008) Drosophila importin alpha-1 performs paralog-specific functions essential for gametogenesis. Genetics 178:839–850

    Article  PubMed  CAS  Google Scholar 

  • Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV (2003) Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Current Biol 13:1512–1517

    Article  CAS  Google Scholar 

  • Roy SW (2003) Recent evidence for the exon theory of genes. Genetica 118:251–266

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang BF (2008) A phylogenomic investigation into the origin of metazoa. Mol Biol Evol 25:664–672

    Article  PubMed  CAS  Google Scholar 

  • Samuel MA, Salt JN, Shiu SH, Goring DR (2006) Multifunctional arm repeat domains in plants. Int Rev Cytol 253:1–26

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X interface: flexible strategies for multiple sequences alignment aided by quality analysis tool. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tran EJ, Wente SR (2006) Dynamic nuclear pore complexes: life on the edge. Cell 125:1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Tsuji L, Takumi T, Imamoto N, Yoneda Y (1997) Identification of novel homologues of mouse importin alpha, the alpha subunit of the nuclear pore-targeting complex, and their tissue-specific expression. FEBS Lett 416:30–34

    Article  PubMed  CAS  Google Scholar 

  • Weis K (2002) Nucleocytoplasmic transport: cargo trafficking across the border. Curr Opin Biol 12:328–335

    Article  Google Scholar 

  • Williams JG, Noegel AA, Eichinger L (2005) Manifestations of multicellularity: Dictyostelium reports in. Trends Genet 21:392–398

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara N, Shibazaki N, Tanaka S, Nagai M, Kamikawa Y, Oe S, Asally M, Kamachi Y, Kondoh H, Yoneda Y (2007) Triggering neural differentiation of ES cells by subtype switching of importin-alpha. Nat Cell Biol 9:72–79

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank David J. Heinrich and Rulang Jiang for technical assistance and Harmit Malik, Howard Ochman, and Daven Presgraves for helpful discussions and comments on the manuscript. Richard E. Glor was especially helpful with the long-branch attraction problem. This work was supported by NIH Grant No. RO1GM067838 (D. S. Goldfarb). D. E. Stage was supported by NSF Grant MCB-0544071 to T. H. Eickbush.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Goldfarb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, D.A., Stage, D.E. & Goldfarb, D.S. Evolution of the Metazoan-Specific Importin α Gene Family. J Mol Evol 68, 351–365 (2009). https://doi.org/10.1007/s00239-009-9215-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9215-8

Keywords

Navigation